Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

SURFACE-ENHANCED RAMAN SCATTERING SENSOR BASED ON SELF-ASSEMBLED SILVER NANOPARTICLES FOR DETECTING ROTTEN EGGS

Abstract

Eggs are nutritious food that can decompose to emit hydrogen sulfide (H2S) gas when stored for a long time. We designed a surface-enhanced Raman scattering (SERS) sensor based on self-assembled silver nanoparticles (Ag NPs) to detect endogenous H2S generated in rotten eggs. The Ag NPs were prepared using a reduction method to enhance the Raman signal of the probe molecule, 4-mercaptobenzoic acid. The prepared Ag-NP substrate exhibited an excellent Raman strength enhancement effect, good uniformity, and long-term stability. To explore the possibility of using a SERS platform in H2S gas detection, a quantitative analysis with different H2S concentrations was performed. The results showed a good linear relationship between the Raman intensity at 1073 cm–1 and various H2S concentrations, and the H2S detection limit was as low as 0.03 μM.

About the Authors

H. Tan
College of Optical and Electronic Technology at China Jiliang University
China

Hangbin Tan

Hangzhou



S. Jin
College of Optical and Electronic Technology at China Jiliang University; Key Laboratory of Zhejiang Province Modern Measurement Technology and Instrument at China Jiliang University
China

Shangzhong Jin

Hangzhou



R. Xu
College of Optical and Electronic Technology at China Jiliang University
China

Rui Xu

Hangzhou



L. Jiang
College of Optical and Electronic Technology at China Jiliang University; Key Laboratory of Zhejiang Province Modern Measurement Technology and Instrument at China Jiliang University
China

Li Jiang

Hangzhou



Y. Li
College of Optical and Electronic Technology at China Jiliang University
China

Yifan Li

Hangzhou



Z. Yu
College of Optical and Electronic Technology at China Jiliang University
China

Zizhen Yu

Hangzhou



C. Jiang
College of Optical and Electronic Technology at China Jiliang University
China

Cailing Jiang

Hangzhou



References

1. A. S. Eddin, S. A. Ibrahim, R. Tahergorabi, Food Chem., 296, 29–39 (2019).

2. C. Hisasaga, S. E. Griffin, K. J. Tarrant, Poultry Sci., 99, 7202–7206 (2020).

3. R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, E. Decuypere, J. de Baerdemaeker, Eur. Food Res. Technol., 222, 727–732 (2006).

4. X. Dong, J. Dong, Y. Peng, X. Tang, Spectrosc. Lett., 50, 463–469 (2017).

5. X. Dong, Z. Li, Z. Shen, X. Tang, Spectrosc. Lett., 51, 540–546 (2018).

6. S. Grassi, R. Vitale, C. Alamprese, LWT – Food Sci. Technol., 96, 469–475 (2018).

7. F. Ge, Y. Chen, A. Liu, S. Guang, Z. Cai, Cellulose, 26, 2689–2697 (2019).

8. N. Akbarzadeh, S. A. Mireei, G. Askari, A. H. Mahdavi, Food Chem., 277, 558–565 (2019).

9. M. Soltani, M. Omid, LWT – Food Sci. Technol., 62, 1034–1042 (2015).

10. M. Soltani, M. Omid, R. Alimardani, Food Anal. Methods, 8, 710–717 (2015).

11. D. Dai, T. Jiang, W. Lu, X. Shen, R. Xiu, J. Zhang, Sensors, 20, 5484 (2020).

12. S. Suktanarak, S. Teerachaichayut, J. Food Eng., 215, 97–103 (2017).

13. W. Zhang, L. Pan, S. Tu, G. Zhan, K. Tu, J. Food Eng., 157, 41–48 (2015).

14. F. Freni, A. Quattrocchi, A. Di Giacomo, S. A. Piccolo, R. Montanini, Quant. Infrared Thermogr. J., 25–29 (2018).

15. Y. He, B. Zhao, W. Kan, L. Ding, Z. Yu, M. Wang, B. Song, L. Wang, Analyst, 145, 213–222 (2020).

16. Y. J. Ahn, Y.G. Gil, Y. J. Lee, H. Jang, G. J. Lee, Microchem. J., 115, 104724 (2020).

17. T. A. Alexander, D. M. Le, Appl. Opt., 46, 3878–3890 (2007).

18. M. Gühlke, Z. Heiner, J. Kneipp, J. Phys. Chem. C, 120, 20702–20709 (2016).

19. Y. J. Ahn, Y. Gil, Y. J. Lee, H. Jang, G. Lee, Microchem. J., 155, 104724 (2020).

20. S. K. Gahlaut, K. Yadav, C. Sharan, J. P. Singh, Anal. Chem., 89, 13582–13588 (2017).

21. J. Lee, Y. J. Lee, Y. J. Ahn, S. Choi, G. Lee, Sensor. Actuat. B-Chem., 256, 828–834 (2018).

22. Y. J. Ahn, Y. J. Lee, J. Lee, D. Lee, H. Park, G. Lee, Spectrochim. Acta A, 177, 118–124 (2017).

23. X. Huang, S. Wu, H. Hu, J. Sun, ACS Sensors, 5, 2636–2643 (2020).

24. S. Lin, W. Hasi, X. Lin, S. Han, T. Xiang, S. Liang, L. Wang, ACS Sensors, 5, 1465–1473 (2020).

25. K. Wang, J. Li, Spectrochim. Acta A, 263, 120218 (2021).

26. Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu, W. Yang. Colloid. Surface A, 372, 172–176 (2010).

27. X. Lin, G. Fang, Y. Liu, Y. He, L. Wang, B. Dong, J. Phys. Chem. Lett., 11, 3573–3581 (2020).

28. T. J. Kim, Y. J. Lee, Y. J. Ahn, G. Lee, Anal. Biochem., 574, 57–65 (2019).

29. Y. J. Ahn, Y. J. Lee, J. Lee, D. Lee, H. Park, G. Lee, Spectrochim. Acta A, 177, 118–124 (2017).

30. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang, ACS Appl. Mater. Int., 6, 18735–18741 (2014).

31. Q. Li, S. Gong, H. Zhang, F. Huang, L. Zhang, S. Li, Chem. Eng. J., 371, 26–33 (2019).

32. E. Z. Tan, P. G. Yin, T. T. You, H. Wang, L. Guo, ACS Appl. Mater. Int., 4, 3432–3437 (1944).

33. J. L. Lu, Z. Y. Cai, Y. S. Zou, D. Y. Wu, G. Liu, ACS Appl. Nano Mater., 2, 6592–6601 (2019).

34. W. Zhou, B. Yin, B. Ye, Biosens. Bioelectron., 87, 187–194 (2017).

35. T. J. Kim, Y. J. Lee, Y. J. Ahn, G. Lee, Anal. Biochem., 574, 57–65 (2019).

36. L. Zhu, H. Dai, S. Zhang, D. Hu, Q. Zhou, M. Zou, J. Adkins, J. Zheng, Anal. Lett., 52, No. 18, 2868–2882 (2019).

37. S. Lin, X. Lin, Y. Shang, S. Han, W. Hasi, L. Wang, J. Phys. Chem. C, 123, 24714–24722 (2019).


Review

For citations:


Tan H., Jin S., Xu R., Jiang L., Li Y., Yu Z., Jiang C. SURFACE-ENHANCED RAMAN SCATTERING SENSOR BASED ON SELF-ASSEMBLED SILVER NANOPARTICLES FOR DETECTING ROTTEN EGGS. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):742.

Views: 111


ISSN 0514-7506 (Print)