LABEL-FREE SERS-4,4'-DIPYRIDINE PROBE FOR THE DETECTION OF Hg2+ IN A COMPLEX SYSTEM OF MEDICAL INJECTION
Abstract
A method was reported regarding a novel surface-enhanced Raman scattering probe to detect and quantify Hg2+ with reasonable specificity and selectivity. Highly selective and sensitive detection of Hg2+ in traditional Chinese medicine preparations was achieved by using silver nanoparticles as Raman substrate and 4,4'-dipyridine (Dpy) as the signal probe with the assistance of the polymerizing agent sodium chloride. Here, the 4,4'-dipyridine molecule was adsorbed on the surface of silver nanoparticles through Ag-N. Then, sodium chloride was supplemented to induce aggregation of silver nanoparticles, resulting in a significant enhancement of its signal. The presence of Hg2+ could make the 4,4'-dipyridine fall off from the surface of silver nanoparticles and reduce the signal. It showed an enviable detection speed with 10 ng/mL sensitivity. A good linear relationship between Raman spectral signal and Hg2+ concentration 50–1000 ng/mL (R2 = 0.9884) was observed. The recoveries ranged from 97.47 to 100.07% for the detection of Qingkailing injection. The results indicated that the surface-enhanced Raman scattering-based 4,4'-Dipyridine probe method for detecting heavy metals could eliminate the interference of other small molecules in the complex system and perform significantly higher detection sensitivity than the pharmacopeia standard
Keywords
About the Authors
Hui ZhangChina
Hangzhou
B. Wang
China
Baoling Wang
Hangzhou
X. Liu
China
Xiaoyi Liu
Hangzhou
H. Zhang
China
Hongxu Zhang
Hangzhou
J. Yan
China
Jizhong Yan
Hangzhou
References
1. S. Gu, J. Pei, Front Pharm., 8, 381 (2017).
2. Y. Chen, J. Zou, H. Sun, J. Qin, J. Yang, Ecotoxic. Environ. Saf., 207, 111311 (2021).
3. X. Ren, R. Du, X. Zhang, K. Shi, Y. Zong, Chin. Trad. Herb. Drugs, 50, 2480–2490 (2019).
4. Z. Jiang, N. Xu, B. Liu, L. Zhou, J. Wang, C. Wang, B. Dai, W. Xiong, Ecotoxic. Environ. Saf., 157, 1–8 (2018).
5. V. Dugandžić, S. Kupfer, M. Jahn, T. Henkel, K. Weber, D. Cialla-May, J. Popp, Sens. Actuat. B: Chem., 279, 230–237 (2019).
6. W. Ren, C. Zhu, E. Wang, Nanoscale, 4, No. 19 (2012).
7. Y. Zeng, L. Wang, L. Zeng, A. Shen, J. Hu, Talanta, 162, 374–379 (2017).
8. D. Zhang, S. Yang, Q. Ma, J. Sun, H. Cheng, Y. Wang, J. Liu, Food Chem., 313, 126119 (2020).
9. J. Liang, Z. W. Wang, S. B. Deng, F. F. Liu, L. Fang, D. F. Liu, Chin. Trad. Herb. Drug., 50, 6002–6008 (2019).
10. Y. M. Tang, W. Cai, B. Li, Z. W. Zhao, Y. T. Duan, Trad. Chin. Med., 43, 181–184 (2021).
11. A. Q. Shah, T. G. Kazi, J. A. Baig, H. I. Afridi, M. B. Arain, Food Chem., 134, No. 4, 2345–2349 (2012).
12. K. Li, H. Yang, X. Yuan, M. Zhang, Microchem. J., 160 (2021).
13. Y. Lei, F. Zhang, P. Guan, P. Guo, G. Wang, New J. Chem., 44, No. 33, 14299–14305 (2020).
14. Y. Zhang, G. M. Zeng, L. Tang, J. Chen, Y. Zhu, X. X. He, Y. He, Anal. Chem., 87, No. 2, 989–996 (2015).
15. J. Wang, J. Wu, Y. Zang, X. Zhou, Z. Hu, X. Liao, B. Sheng, K. Yuan, X. Wu, H. Cai, H. Zhou, P. Sun, Sens. Actuat. B: Chem., 330 (2021).
16. Y.-P. Zhu, T.-Y. Ma, T.-Z. Ren, Z.-Y. Yuan, ACS Appl. Mater. Interfaces, 18, No. 6, 16344–16351 (2014).
17. Y. Peng, M. Liu, X. Chen, H. Yuan, J. Zhao, Spectrosc. Lett., 50, No. 10, 579–584 (2017).
18. Y. X. Chen, M. W. Chen, J. Y. Lin, W. Q. Lai, W. Huang, H. Y. Chen, G. X. Weng, Appl. Spectrosc., 835, No. 5, 798–804 (2016).
19. M. Smith, M. Logan, M. Bazley, J. Blanchfield, R. Stokes, A. Blanco, R. McGee, J. Forens. Sci., 66, No. 2, 505–519 (2021).
20. M.-L. Xu, Y. Gao, X. X. Han, B. Zhao, J. Agric. Food Chem., 65, No. 32, 6719–6726 (2017).
21. Y. Liu, X. Li, J. Cheng, N. Zhou, L. Zhang, H. Mao, C. Huang, J. Innov. Opt. Health Sci., 14, No. 4 (2021).
22. H. Zhang, P. Nie, Z. Xia, X. Feng, X. Liu, Y. He, Molecules, 25, No. 18 (2020).
23. Y. Zhang, H. Zhang, D. Li, S. M. Z. Abbas Naqvi, M. I. Abdulraheem, R. Su, S. Ahmed, J. Hu, Spectrosc. Lett., 54, No. 10, 732–741 (2021).
24. J. H. Li, Y. Du, G. K. Feng, Y. B. Du, Y. Q. Zhou, M. S. Zeng, Appl. Spectrosc., 84, No. 5, 790–795 (2017).
25. P. C. Lee, D. Meisel, J. Phys. Chem., 86, 3391–3395 (1982).
26. J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, Z. Q. Tian, Chem. Rev., 117, No. 7, 5002–5069 (2017).
27. P. Punia, M. K. Bharti, S. Chalia, R. Dhar, B. Ravelo, P. Thakur, A. Thakur, Ceram. Int., 47, No. 2, 1526–1550 (2021).
28. L. Liu, H. Qu, J. Innov. Opt. Health Sci., 13, No. 1 (2019).
29. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Anal. Bioanal. Chem., 403, No. 1, 27–54 (2011).
30. B. Hao, X. Bu, J. Wu, Y. Ding, L. Zhang, B. Zhao, Y. Tian, Microchem. J., 155 (2020).
31. C. Song, B. Yang, Y. Yang, L. Wang, Sci. China Chem., 59, No. 1, 16–29 (2015).
32. A. Hussain, D. W. Sun, H. Pu, Food Chem., 317, 126429 (2020).
33. L. Chen, N. Qi, X. Wang, L. Chen, H. You, J. Li, RSC Adv., 4, No. 29, 15055–15060 (2014).
34. X. Tan, X. B. Liu, H. J. Bai, X. D. Cui, T. Liu, J. Sichuan Univ. (Nat. Sci. Ed.), 58, 148–154 (2021).
35. S. Thatai, P. Khurana, S. Prasad, D. Kumar, Talanta, 134, 568–575 (2015).
36. Y. Wan, Z. Guo, X. Jiang, K. Fang, X. Lu, Y. Zhang, N. Gu, J. Colloid Interface Sci., 394, 263–268 (2013).
37. Y. Zhao, Y. Yamaguchi, Y. Ni, M. Li, X. Dou, Spectrochim. Acta A: Mol. Biomol., 233, 118193 (2020).
38. Q. Da, Y. Gu, X. Peng, L. Zhang, S. Du, Mikrochim. Acta, 185, No. 7, 357 (2018).
39. Q.-Q. Duan, J.-L. Zhou, P.-W. Li, L. Sun, K. Zhuo, Y.-X. Zhang, W.-D. Zhang, S.-B. Sang, Chin. J. Anal. Chem., 46, No. 9, e1874–1879 (2018).
40. H. Erxleben, J. Ruzicka, Anal. Chem., 77, 5124–5128 (2005).
41. R. Y. A. Hassan, M. S. Kamel, H. N. A. Hassan, E. Khaled, J. Electroanal. Chem., 759, 101–106 (2015).
42. M. Hong, Y. Chen, Y. Zhang, D. Xu, Analyst, 144, No. 24, 7351–7358 (2019).
Review
For citations:
Zhang H., Wang B., Liu X., Zhang H., Yan J. LABEL-FREE SERS-4,4'-DIPYRIDINE PROBE FOR THE DETECTION OF Hg2+ IN A COMPLEX SYSTEM OF MEDICAL INJECTION. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):744.