Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

DESIGN OF A FLUORESCENCE ENHANCED APTASENSOR FOR SENSITIVE DETECTION OF SILVER IONS

Abstract

A highly sensitive fluorescence-enhanced aptasensor was designed to detect silver ions (Ag+) using metal-enhanced fluorescence. Interaction of Ag+ with cytosine nucleobases was used to achieve a low detection limit. Aptamer-modified gold nanoparticles (Au NPs) were mixed with 6-carboxyfluorescein (FAM)-labeled DNA to prepare the sensor. In a solution without Ag+, aptamer and FAM-labeled DNA strands remained free because of repulsion between cytosine. In the presence of Ag+, pairs of aptamer and FAM-labeled DNA strands formed double helices through cytosine–Ag+–cytosine interactions. These interactions brought FAM close to the Au NPs. The number of adenines repeats in the aptamer was altered to adjust the distance between the Au NPs and FAM, and provide controllable localized surface plasmon resonance. With the optimum number of adenine repeats (n = 24), the linear range for detection of Ag+ was 0.694 to 6.94 nmol/L and the detection limit was 0.694 nmol/L. The aptasensor showed excellent specificity and gave a strong detection signal for Ag+ present at trace concentrations to overcome issues associated with the detection of weak signals.

About the Authors

L. Ren
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Linjiao Ren

Zhengzhou



G. Chen
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Gaokai Chen

Zhengzhou



Z. Peng
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Zheng Peng

Zhengzhou



X. Xu
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Xiaoping Xu

Zhengzhou



P. Zhang
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Pei Zhang

Zhengzhou



Z. Qin
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Zirui Qin

Zhengzhou



Q. Chen
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Qinghua Chen

Zhengzhou



Y. Yan
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Yanxia Yan

Zhengzhou



L. Jiang
School of Electrical and Information Engineering at Zhengzhou University of Light Industry
China

Liying Jiang

Zhengzhou



References

1. Y. C. Wu, K. Jiang, S. H. Luo, L. Cao, H. Q. Wu, Spectrochim. Acta A, 206, 632–641 (2019).

2. Y. G. Ko, W. S. Na, N. Singh, D. O. Jang, J. Fluoresc., 29, No. 4, 945–952 (2019).

3. Q. Long, Y. Q. Wen, H. T. Li, Y. Y. Zhang, S. Z. Yao, J. Fluoresc., 27, No. 1, 205–211 (2017).

4. Y. Lu, L. J. Meng, Y. Gao, D. L. Liao, Y. X. Li, Anal. Biochem., 549, 21–25 (2018).

5. Y. W. Zhang, A. Y. Ye, Y. W. Yao, C. Yao, Sensors Basel., 19, No. 2, 247–249 (2019).

6. J. W. Qi, Z. Q. Chen, J. Chen, Y. D. Li, W. Qiang, Opt. Express., 22, No. 12, 14688–14695 (2014).

7. Y. F. Zhu, Y. S. Wang, B. Zhou, Y. Q. Huang, X. J. Li, Spectrochim. Acta A, 189, 190–194 (2018).

8. Z. Y. Chu, W. N. Wang, C. Y. Zhang, J. Ruan, B. J. Chen, Chem. Eng. J., 375, 121927 (2019).

9. L. C. Shi, J. S. Hu, X. F. Wu, S. P. Zhan, S. G. Hu, Z. G. Tang, Dalton. T., 47, No. 46, 16445–16452 (2018).

10. D. D. Tan, Y. He, X. J. Xing, Y. Zhao, H. W. Tang, D. W. Pang, Talanta, 113, 26–30 (2013).

11. T. H. Nguyen, S. P. Wren, T. Sun, K. T. V. Grattan, TIEEE Sens. J., 20, 480–482 (2016).

12. N. D. Acha, C. Elosua, J. M. Corres, F. J. Arregui, Sensors. Basel., 19, 599, 1–34 (2019).

13. J. Ding, H. Y. Li, C. Wang, J. Yang, Y. J. Xie, ACS Appl. Mater. Inter., 7, No. 21, 11369–11376 (2015).

14. W. Xu, C. L. Ren, C. L. Teoh, J. J. Peng, S. H. Gadre, Anal. Chem., 86, No. 17, 8763–8769 (2014).

15. Z. Jiao, P. F. Zhang, H. W. Chen, C. Li, L. Chen, Sensor. Actuat. B, Chem., 295, 110–116 (2019).

16. R. R. Gaddam, D. Vasudevan, R. Narayan, K. V. Raju, RSC Adv., 100, No. 4, 57137–57143 (2014).

17. F. Yarur, J. R. Macairan, R. Naccache, Environ. Sci-Nano., 6, No. 4, 1121–1130 (2019).

18. F. Firdaus, A. Farhi, M. Faraz, M. Shakir, J. Lumin., 199, 475–482 (2018).

19. Z. P. Zhou, H. D. Huang, Y. Chen, F. Liu, C. Z. Huang, Biosens. Bioelectron., 52, 367–373 (2014).

20. H. B. Teh, H. N. Wu, X. B. Zuo, S. F. Y. Li, Sensor. Actuat. B Chem., 195, 623–629 (2014).

21. N. Sui, L. Wang, T. F. Yan, F. Y. Liu, J. Sui, Sensor. Actuat. B Chem., 202, 1148–1153 (2014).

22. J. F. Lodeiro, C. Nunez, A. F. Lodeiro, E. Oliveira, C. Lodeiro, Nanopart. Res., 16, No. 3, 1–12 (2014).

23. J. J. Peng, J. Y. Li, Nunez, W. Xu, L. Wang, D. D. Su, Anal. Chem., 90, No. 3, 1628–1634 (2018).

24. G. Aragay, G. Alarcon, J. Pons, A. Merkoci, J. Phys. Chem. C, 116, No. 2, 1987–1994 (2012).

25. W. W. Qin, W. Dou, V. Leen, W. Dehaen, M. V. Auweraer, N. Boens, RSC Adv., 6, No. 10, 7806–7816 (2016).

26. S. S. Bayram, P. Green, A. S. Blum, Spectrochim. Acta A, 195, 21–24 (2018).

27. R. R. Kayumova, S. A. Peshkov, S. S. Ostakhov, S. L. Khursan, High. Energ. Chem., 51, No. 1, 75–77 (2017).

28. Y. Miyake, H. Togashi, M. Tashiro, S. L. Khursan, J. Am. Chem. Soc., 128, No. 7, 2172–2173 (2006).

29. W. H. Zhou, R. Saran, J. Liu, Chem. Rev., 117, No. 12, 8272–8325 (2017).

30. X. Wei, H. Li, Z. H. Li, M. Vuki, Y. Fan, Anal. Bioanal. Chem., 402, No. 3, 1057–1063 (2012).

31. C. W. Liu, C. C. Huang, H. T. Chang, Langmuir., 24, No. 15, 8346–8350 (2008).

32. Y. F. Pang, Z. Rong, R. Xiao, S. Q. Wang, Sci. Rep. UK, 5, No. 1, 1–8 (2015).

33. G. K. Wang, C. W. Shao, C. L. Yan, D. Li, Y. F. Liu, J. Lumin., 210, 21–27(2019).

34. L. D. Lavis, T. J. Rutkoski, R. T. Raines, Sci. Anal. Chem., 79, No. 17, 6775–6782 (2007).

35. J. C. Jin, B. B. Wang, Z. Q. Xu, X. H. He, H. F. Zou, Q. Q. Yang, F. L. Jiang, Y. Liu, Sens. Actuat. B, 267, 627–635 (2018).

36. B. Azizi, K. Farhadi, N. Samadi, J. Anal. Chem., 75, No. 12, 1546–1553 (2020).

37. G. P. Yan, Y. H. Wang, X. X. He, K. M. Wang, J. Su, Z. F. Chen, Z. H. Qing, Talanta, 94, 178–183 (2012).

38. Y. H. Lin, W. L. Teng, Chem. Commun., 43, 6619–6621 (2009).

39. X. H. Gao, Y. Z. Lu, R. Z. Zhang, S. J. He, J. Ju, M. M. Liu, L. Li, W. Chen, J. Mater. Chem. C, 3, No. 10, 2302–2309 (2015).

40. J. Lee, J. Park, H. H. Lee, H. Park, H. I. Kim, W. J. Kim, Biosens. Bioelectron., 68, 642–647(2015).

41. Y. Yang, T. Liu, L. Cheng, G. S. Song, Z. Liu, M. W. Chen, ACS Appl. Mater. Interfaces, 7, No. 14, 7526–7533 (2015).

42. H. Li, S. Ye, J. Q. Guo, H. B. Wang, W. Yan, J. Song, J. Qu, Nano Res., 12, 3075–3084 (2019).

43. J. Q. Guo, S. Ye, H. Li, J. Song, J. Qu, Dyes. Pigment, 183, 108723 (2020).

44. J. Wang, A. Y. Liu, B. C. Wu, Q. L. Wen, Z. F. Pu, R. X. Zhao, J. Ling, Q. Cao, Anal. Methods, 13, No. 18, 2099–2106 (2021).

45. Z. F. Pu, J. Peng, Q. L. Wen, Y. Li, J. Ling, P. Liu, Q. E. Cao, Dyes Pigment, 193, 109533 (2021).

46. T. Khantaw, C. Boonmee, T. Tuntulani, W. Ngeontae, Talanta, 115, 849–856 (2013).


Review

For citations:


Ren L., Chen G., Peng Z., Xu X., Zhang P., Qin Z., Chen Q., Yan Y., Jiang L. DESIGN OF A FLUORESCENCE ENHANCED APTASENSOR FOR SENSITIVE DETECTION OF SILVER IONS. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):745.

Views: 125


ISSN 0514-7506 (Print)