Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photoelectric Conversion Performance of Water-Soluble Palladium-Porphyrin/Graphene Oxide Noncovalent Composites

Abstract

We synthesize a phosphor by combining trimethylammonium tetraphenyl porphyrin with palladium (II), obtaining Pd-TTAP, and investigate its interaction with graphene oxide (GO). Pd-TTAP and GO are found to be noncovalently bonded, according to high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), room temperature phosphorescence spectroscopy (RTP), Raman spectroscopy, and infrared spectroscopy (IR). The binding constant is 2.32 × 104 M−1, calculated using the Benesi–Hildebrand method, and a photoelectric response test finds that photo-induced electrons are transferred from the triplet excited state of Pd-TTAP to GO under visible light excitation. Our results demonstrate that Pd-TTAP can serve as an effective energy donor, with GO as an electron acceptor, in photoelectric conversion systems. 

About the Authors

Y. T. Wang
School of Chemistry and Chemical Engineering at Shanxi University
China

Taiyuan



R. R. Wu
School of Chemistry and Chemical Engineering at Shanxi University
China

Taiyuan



Y. Y. Zhang
School of Chemistry and Chemical Engineering at Shanxi University
China

Taiyuan



B. H. Wang
McGill University
Canada

Department of Electrical and Computer Engineering, 

Montreal, Quebec, H3A 0E9



H. W. Lee
Dong-Eui University
Korea, Republic of

Department of Public Health, Oriental Medicine History

Busan



References

1. A. K. Geim, K. S. Novoselov, Nat. Mater., 6, No. 3, 183–191 (2007).

2. D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed., 49, No. 49, 9336–9344 (2010).

3. S. J. Guo, S. J. Dong, Chem. Soc. Rev., 40, No. 5, 2644–2672 (2011).

4. Y. W. Zhu, S. Murali, W.W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater., 22, No. 46, 5226 (2010).

5. D. C. Wei, Y. Q. Liu, Adv. Mater., 22, No. 30, 3225–3241 (2010).

6. X. Q. Zhang, Y. Y. Feng, D. Huang, Y. Li, W. Feng, Carbon, 48, No. 11, 3236–3241 (2010).

7. Y. Z. Luo, Y. Yang, Y. X. Tao, D. K. Huang, B. H. Huang, H. Chen, ACS App. Energy Mater., 4, No. 12, 14599–14607 (2021).

8. J. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, E. D. Williams, Adv. Mater., 19, No. 21, 3623–3627 (2007).

9. L. C. Li, M. Zhou, L. Jin, Y. T. Mo, E. Y. Xu, H. J. Chen, L. C. Liu, M. Y. Wang, X. Chen, H. W. Zhu, Materials, 13, No. 18, 4069 (2020).

10. G. C. Wang, Z. Y. Yang, X. W. Li, C. Z. Li, Carbon, 43, No. 12, 2564–2570 (2005).

11. G. D. Fan, C. G. Chen, X. L. Chen, Z. S. Li, S. L. Bao, J. Luo, D. S. Tang, Z. S. Yan, Sci. Total Environ., 801, 149611 (2021).

12. X. W. Wang, Q. Sun, L. H. Qi, Res. Chem. Intermed., 46, No. 3, 1705–1714 (2020).

13. Y. Lin, K. Zhang, W. F. Chen, Y. D. Liu, Z. G. Geng, J. Zeng, N. Pan, L. F. Yan, X. P. Wang, J. G. Hou, ACS Nano, 4, No. 6, 3033–3038 (2010).

14. M. Borges-Martinez, N. Montenegro-Pohlhammer, Y. Yamamoto, T. Baruah, G. Cardenas-Jiron, J. Phys. Chem. C, 124, No. 24, 12968–12981 (2020).

15. J. Wang, D. M. Ma, Y. X. Feng, Y. Xian, D. J. Qian, J. Nanopart. Res., 22, No. 11, 1–13 (2020).

16. F. Yang, Y. Z. Wu, J. Zhao, Y. T. Guo, X. D. Guo, W. W. Li, J. P. Wang, Phys. Chem. Chem. Phys., 22, No. 36, 20891–20900 (2020).

17. Z. F. Liu, Q. Liu, Y. Huang, Y. F. Ma, S. G. Yin, X. Y. Zhang, W. Sun, Y. S. Chen, Adv. Mater., 20, No. 20, 3924–3930 (2008).

18. Y. J. Yuan, D. Q. Chen, J. S. Zhong, L. X. Yang, J. J. Wang, Z. G. Zou, J. Phys. Chem. C, 121, No. 44, 24452–24462 (2017).

19. S. Zargaria, R. Rahimia, A. Ghaffarinejada, A. Morsalib, J. Colloid Interface Sci., 466, 310–321 (2016).

20. Q. Y. Wan, W. P. To, X. Y. Chang, C. M. Che, Chemistry, 6, No. 4, 945–967 (2020).

21. N. P. Nguyen, B. L. Wadsworth, D. Nishiori, E. A. Reyes Cruz, G. F. Moore, J. Phys. Chem. Lett., 12, No. 1, 199–203 (2020).

22. Y. T. Wang, W. J. Jin, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 70, No. 4, 871–877 (2008).

23. G. D. Ruan, Z. Z. Sun, Z. W. Peng, J. M. Tour. ACS Nano, 5, No. 9, 7601–7607 (2011).

24. L. Liu, S. P. Morgan, R. Correia, S. W. Lee, S. Korposh, J. Light. Technol., 38 No. 7, 2037–2045 (2020).

25. H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc., 71, No. 8, 2703–2707 (1949).

26. P. Pander, A. Swist, R. Motyka, J. Soloducho, F. B. Dias, P. Data, J. Mater. Chem. C, 6, No. 20, 5434–5443 (2018).

27. A. Kathiravan, P. S. Kumar, R. Renganathan, S. Anandan, Colloids Sur. A Physicochem. Eng. Asp., 333, No. 1-3, 175–181 (2009).

28. F. Tuinstra, J. L. Koenig, J. Chem. Phys., 53, No. 3, 1126–1130 (1970).

29. Y. J. Guo, S. J. Guo, J. T. Ren, Y. M. Zhai, S. J. Dong, E. K. Wang, ACS Nano, 4, No. 7, 4001–4010 (2020).

30. K. D. Xia, S. S. Yu, Y. L. Li, H. J. Han, L.Y. Duan, Z. Y. Hou, X. Liu, J. Eur. Ceram. Soc., 41, No. 4, 2375–2385 (2020).

31. Z. Hu, S. B. Ge, J. Yang, Y. Y. Li, H. T. Bi, D. F. Zheng, Y. Zhao, W. X. Peng, Z. F. Zhang, J. King Saud Univ. Sci., 32, No. 3, 1884–1888 (2020).

32. T. Hajiashrafi, R. Zekriazadeh, K. J. Flanagan, F. Kia, A. Bauzá, A. Fronterac, M. O. Senge, Acta Cryst. C, 75, No. 2, 178–188 (2019).

33. H. Lim, D. Na, C. R. Lee, H. K. Seo, O. H. Kwon, J. K. Kim, I. Seo, Energies, 14, No. 19, 6010 (2021).

34. K. Atacan, N. Güy, B. Boutracd, M. Özacar, Int. J. Hydrogen Energy, 45, No. 35, 17453–17467 (2020).

35. M. S. Zhu, Z. Li, B. Xiao, Y. T. Lu, Y. K. Lu, P. Yang, and X. M. Wang, ACS Appl. Mater. Interfaces, 5, No. 5, 1732–1740 (2013).


Review

For citations:


Wang Y.T., Wu R.R., Zhang Y.Y., Wang B.H., Lee H.W. Photoelectric Conversion Performance of Water-Soluble Palladium-Porphyrin/Graphene Oxide Noncovalent Composites. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):908.

Views: 143


ISSN 0514-7506 (Print)