Photoelectric Conversion Performance of Water-Soluble Palladium-Porphyrin/Graphene Oxide Noncovalent Composites
Abstract
We synthesize a phosphor by combining trimethylammonium tetraphenyl porphyrin with palladium (II), obtaining Pd-TTAP, and investigate its interaction with graphene oxide (GO). Pd-TTAP and GO are found to be noncovalently bonded, according to high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), room temperature phosphorescence spectroscopy (RTP), Raman spectroscopy, and infrared spectroscopy (IR). The binding constant is 2.32 × 104 M−1, calculated using the Benesi–Hildebrand method, and a photoelectric response test finds that photo-induced electrons are transferred from the triplet excited state of Pd-TTAP to GO under visible light excitation. Our results demonstrate that Pd-TTAP can serve as an effective energy donor, with GO as an electron acceptor, in photoelectric conversion systems.
About the Authors
Y. T. WangChina
Taiyuan
R. R. Wu
China
Taiyuan
Y. Y. Zhang
China
Taiyuan
B. H. Wang
Canada
Department of Electrical and Computer Engineering,
Montreal, Quebec, H3A 0E9
H. W. Lee
Korea, Republic of
Department of Public Health, Oriental Medicine History
Busan
References
1. A. K. Geim, K. S. Novoselov, Nat. Mater., 6, No. 3, 183–191 (2007).
2. D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, Angew. Chem. Int. Ed., 49, No. 49, 9336–9344 (2010).
3. S. J. Guo, S. J. Dong, Chem. Soc. Rev., 40, No. 5, 2644–2672 (2011).
4. Y. W. Zhu, S. Murali, W.W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater., 22, No. 46, 5226 (2010).
5. D. C. Wei, Y. Q. Liu, Adv. Mater., 22, No. 30, 3225–3241 (2010).
6. X. Q. Zhang, Y. Y. Feng, D. Huang, Y. Li, W. Feng, Carbon, 48, No. 11, 3236–3241 (2010).
7. Y. Z. Luo, Y. Yang, Y. X. Tao, D. K. Huang, B. H. Huang, H. Chen, ACS App. Energy Mater., 4, No. 12, 14599–14607 (2021).
8. J. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, E. D. Williams, Adv. Mater., 19, No. 21, 3623–3627 (2007).
9. L. C. Li, M. Zhou, L. Jin, Y. T. Mo, E. Y. Xu, H. J. Chen, L. C. Liu, M. Y. Wang, X. Chen, H. W. Zhu, Materials, 13, No. 18, 4069 (2020).
10. G. C. Wang, Z. Y. Yang, X. W. Li, C. Z. Li, Carbon, 43, No. 12, 2564–2570 (2005).
11. G. D. Fan, C. G. Chen, X. L. Chen, Z. S. Li, S. L. Bao, J. Luo, D. S. Tang, Z. S. Yan, Sci. Total Environ., 801, 149611 (2021).
12. X. W. Wang, Q. Sun, L. H. Qi, Res. Chem. Intermed., 46, No. 3, 1705–1714 (2020).
13. Y. Lin, K. Zhang, W. F. Chen, Y. D. Liu, Z. G. Geng, J. Zeng, N. Pan, L. F. Yan, X. P. Wang, J. G. Hou, ACS Nano, 4, No. 6, 3033–3038 (2010).
14. M. Borges-Martinez, N. Montenegro-Pohlhammer, Y. Yamamoto, T. Baruah, G. Cardenas-Jiron, J. Phys. Chem. C, 124, No. 24, 12968–12981 (2020).
15. J. Wang, D. M. Ma, Y. X. Feng, Y. Xian, D. J. Qian, J. Nanopart. Res., 22, No. 11, 1–13 (2020).
16. F. Yang, Y. Z. Wu, J. Zhao, Y. T. Guo, X. D. Guo, W. W. Li, J. P. Wang, Phys. Chem. Chem. Phys., 22, No. 36, 20891–20900 (2020).
17. Z. F. Liu, Q. Liu, Y. Huang, Y. F. Ma, S. G. Yin, X. Y. Zhang, W. Sun, Y. S. Chen, Adv. Mater., 20, No. 20, 3924–3930 (2008).
18. Y. J. Yuan, D. Q. Chen, J. S. Zhong, L. X. Yang, J. J. Wang, Z. G. Zou, J. Phys. Chem. C, 121, No. 44, 24452–24462 (2017).
19. S. Zargaria, R. Rahimia, A. Ghaffarinejada, A. Morsalib, J. Colloid Interface Sci., 466, 310–321 (2016).
20. Q. Y. Wan, W. P. To, X. Y. Chang, C. M. Che, Chemistry, 6, No. 4, 945–967 (2020).
21. N. P. Nguyen, B. L. Wadsworth, D. Nishiori, E. A. Reyes Cruz, G. F. Moore, J. Phys. Chem. Lett., 12, No. 1, 199–203 (2020).
22. Y. T. Wang, W. J. Jin, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 70, No. 4, 871–877 (2008).
23. G. D. Ruan, Z. Z. Sun, Z. W. Peng, J. M. Tour. ACS Nano, 5, No. 9, 7601–7607 (2011).
24. L. Liu, S. P. Morgan, R. Correia, S. W. Lee, S. Korposh, J. Light. Technol., 38 No. 7, 2037–2045 (2020).
25. H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc., 71, No. 8, 2703–2707 (1949).
26. P. Pander, A. Swist, R. Motyka, J. Soloducho, F. B. Dias, P. Data, J. Mater. Chem. C, 6, No. 20, 5434–5443 (2018).
27. A. Kathiravan, P. S. Kumar, R. Renganathan, S. Anandan, Colloids Sur. A Physicochem. Eng. Asp., 333, No. 1-3, 175–181 (2009).
28. F. Tuinstra, J. L. Koenig, J. Chem. Phys., 53, No. 3, 1126–1130 (1970).
29. Y. J. Guo, S. J. Guo, J. T. Ren, Y. M. Zhai, S. J. Dong, E. K. Wang, ACS Nano, 4, No. 7, 4001–4010 (2020).
30. K. D. Xia, S. S. Yu, Y. L. Li, H. J. Han, L.Y. Duan, Z. Y. Hou, X. Liu, J. Eur. Ceram. Soc., 41, No. 4, 2375–2385 (2020).
31. Z. Hu, S. B. Ge, J. Yang, Y. Y. Li, H. T. Bi, D. F. Zheng, Y. Zhao, W. X. Peng, Z. F. Zhang, J. King Saud Univ. Sci., 32, No. 3, 1884–1888 (2020).
32. T. Hajiashrafi, R. Zekriazadeh, K. J. Flanagan, F. Kia, A. Bauzá, A. Fronterac, M. O. Senge, Acta Cryst. C, 75, No. 2, 178–188 (2019).
33. H. Lim, D. Na, C. R. Lee, H. K. Seo, O. H. Kwon, J. K. Kim, I. Seo, Energies, 14, No. 19, 6010 (2021).
34. K. Atacan, N. Güy, B. Boutracd, M. Özacar, Int. J. Hydrogen Energy, 45, No. 35, 17453–17467 (2020).
35. M. S. Zhu, Z. Li, B. Xiao, Y. T. Lu, Y. K. Lu, P. Yang, and X. M. Wang, ACS Appl. Mater. Interfaces, 5, No. 5, 1732–1740 (2013).
Review
For citations:
Wang Y.T., Wu R.R., Zhang Y.Y., Wang B.H., Lee H.W. Photoelectric Conversion Performance of Water-Soluble Palladium-Porphyrin/Graphene Oxide Noncovalent Composites. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):908.