Spectral and Photophysical Parameters of Set Hydrophobic Phtalocyanines and Porphyrins in Water-Micellar Solution
https://doi.org/10.47612/0514-7506-2023-90-2-211-219
Abstract
The spectral and photophysical parameters for the family of hydrophobic metallocomplexes of phthalocyanines and porphyrins, which were incapsulated in polymeric micelles, has been studied in water solutions at 293 K. The fluorescent characteristics of above mentioned compounds with light ions of Mg(II) and Zn(II), as it was found, have weak differences between the values of main photophysical parameters in water-micellar solutions relatively to the same values in organic solvents. In contrast, the encapsulation of the porphyrins with heavy Pd(II) and Pt(II) ions into polymeric micelles leads to a significant increase in the values of quantum yields and phosphorescence lifetimes in water-micellar solutions relatively to the same characteristics in organic solvents. It was shown that these differences were due to the spin-orbital coupling effect for compounds with Pd(II) and Pt(II) ions, as well as, significant decreasing of the efficiencies quenching of triplet states by molecular oxygen upon encapsuling of compounds in polymeric micelles. The luminescent parameters for the studied compounds depend on the nature of the polymeric micelles and the structure of the studied compounds.
About the Authors
A. S. StarukhinBelarus
Minsk
Yu. D. Korol
Belarus
Minsk
T. A. Pavich
Belarus
Minsk
V. S. Shershen
Belarus
Minsk
A. Yu. Il’in
Belarus
Minsk
A. A. Ramanenka
Belarus
Minsk
References
1. J. Park, K. Hong, H. Lee, W. Jang. Acc. Chem. Res., 54, N 9 (2021) 2249—2260
2. Y. Shi, F. Zhang, R. Linhardt. Dyes and Pigments, 188, N 4 (2021) 109136
3. P. Gujarathi. Pharm. Innovat. J., 9, N 4 (2020) 80—86
4. J. Park, J. Lee, W. Jang. Coord. Chem. Rev., 407 (2020) 213157
5. D. Monti, S. Nardis, M. Stefanelli, R. Paolesse, C. Natale, A. D’Amico. J. Sensors (2009) 856053
6. Y. F. Huan, Q. Fei, H. Y. Shan, B. J. Wang, H. Xua, G. D. Feng. Analyst, 140 (2015) 1655—1661
7. D. Wöhrle, G. Schnurpfeil, S. Makarov, A. Kazarin, O. Suvorova. Macroheterocycles, 5 (2012) 191—202
8. V. Lioret, S. Saou, A. Berrou, L. Lernerman, C. Arnould, R. Decréau. Photochem. Photobiol. Sci. (2022), doi: 10.1007/s43630-022-00313-0
9. X. Li, X. Peng, B.Zheng, J. Tang, Y. Zhao, B. Zheng, M. Ke, J. Huang. Chem. Sci., 9 (2018) 2098—2104
10. N. Sekkat, H. van den Bergh, T. Nyokong, N. Lange. Molecules, 17 N 1 (2012) 98—144
11. M. Whalley. J. Chem. Soc. (1961) 866—869
12. А. Т. Градюшко, М. П. Цвирко. Опт. и спектр., 31, № 4 (1971) 213—218
13. А. С. Старухин, А. В. Горский, М. З. Кияк. Изв. РАН. Сер. физ., 82, № 12 (2018) 1722—1727
14. V. Verdree, S. Pakhomov, G. Su, M. Allen, A. Countryman, R. Hammer, S. Soper. J. Fluoresс., 17 (2007) 547—563
15. E. Güzel, A. Kocac, M. Koçak. Supramol. Chem., 29, N 7 (2017) 536—546
16. S. Makhseed, M. Machacek, W. Alfadly, A. Tuhl, M. Vinodh, T. Simunek, V. Novakova, P. Kubat, E. Rudolf, P. Zimcik. Chem. Commun., 49 (2013) 11149—11151
17. J. Matsumoto, T. Shiragami, K. Hirakawa, M. Yasuda. Int. J. Photoenergy, 2015 (2015) 148964
18. S. Gungor, M. Tumer, F. Tumer, M. Kose, O. Gungor, S. Purtas. Appl. Organometal. Chem., 36, N 3 (2022), doi: 10.1002/aoc.6534
19. E. Yabas, S. Sahin-Bolukbasi, Z. D. Sahin-Inan. J. Porphyrin. Phthaloc., 26, N 1 (2022) 65—77
20. H. P. Karaoğlu, Ö. Sağlam, S. Özdemir, S. Gonca, M. Koçak. Dalton Transact., 50, N 28 (2021) 9700—9708
21. M. L’Her, Ö. Göktuğ, M. Durmuş, V. Ahsen. Electrochim. Acta, 213 (2016) 655—662
22. Y. Li, Y. Liu, H. Wang, Z. Li, D. Zhang. ACS Appl. Bio Mater., 5, N 2 (2022) 881—888
23. A. Starukhin, V. Apyari, A. Gorski, A. Ramanenka, A. Furletov. EPJ Web Conf., 220 (2019) 03003
24. R. P. Linstead, M. Whalley. J. Chem. Soc., 944 (1952) 4839—4846
25. K. Sakamoto, E. Ohno-Okumura. Materials, 2, N 3 (2009) 1127—1135
26. J. Sessler, А. Mozaffari, A. Johnson. Org. Syntheses, 70 (2003) 68—73
27. A. Adler, F. Longo, J. Finarelli, Alan D. Adler, J. Goldmacher, L. Korsakoff. J. Org. Chem., 32, N 2 (1967) 476
28. А. С. Старухин, Ю. Д. Король, T. А. Павич, А. А. Романенко, Л. И. Гайна. Изв. РАН, Сер. физ., 86, № 6 (2022) 775—780
29. А. С. Старухин, А. А. Романенко, В. Ю. Плавский. Опт. и спектр., 130, № 5 (2022) 709—716
30. M. Taniguchia, J. Lindsey, D. Bocian, D. Holten. J. Photochem. and Photobiol. C, 46, N 3 (2021) 100401
31. R. Basak, R. Bandyopadhyay. Langmuir, 8, N 29 (2013) 4350—4356
32. M. Managa, T. Nyokong. Macroheterocycles, 10, N 4-5 (2017) 467—473
33. M. Managa, J. Britton, E. Prinsloo, T. Nyokonget. Polyhedron, 152, N 15 (2018) 102—107
34. C. Grewer, H. Brauer. J. Phys. Chem., 98, N 16 (1994) 4230—4235
35. M. Montalti, A. Credi, L. Prodi, M. Gandolfi. Handbook of Photochemistry. Materials Science, 3rd ed., Boca Raton, SRC, Taylor & Francis Group (2006) 542—548
36. A. Gorski, V. Knyukshto, E. Zenkevichc, A. Starukhin, M. Kijak, J. Solarski, A. Semeikin,T. Lyubimova. J. Photochem. and Photobiol. A: Chemistry, 354 (2018) 101—111
37. R. Redmond, J. Gamlin. Photochem. and Photobiol., 70, N 4 (1999) 391—475
Review
For citations:
Starukhin A.S., Korol Yu.D., Pavich T.A., Shershen V.S., Il’in A.Yu., Ramanenka A.A. Spectral and Photophysical Parameters of Set Hydrophobic Phtalocyanines and Porphyrins in Water-Micellar Solution. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):211-219. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-2-211-219