Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Laser Synthesis and Optical Properties of the Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation

https://doi.org/10.47612/0514-7506-2023-90-2-253-265

Abstract

The dependencies of the morphology and optical properties of silicon nanostructures on the laser ablation synthesis conditions were established, namely on the laser focusing conditions, laser pulse repetition rate, as well as temperature and composition of the solution. The regularities obtained were used for the development of the method for Si-Ag and Si-Ag-Сu hybrid metal-silicon nanostructures formation. It has been demonstrated that the obtained broadband absorption of the Si-Ag-Cu nanoparticles is promising for the application in nanofluids for photothermal energy conversion of solar radiation.

About the Authors

N. N. Tarasenka
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. G. Kornev
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



B. D. Urmanov
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



S. T. Pashayan
Institute for Physical Research, National Academy of Sciences of Armenia
Armenia

Ashtarak



E. V. Lutsenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



N. V. Tarasenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. G. Baffou, R. Quidant. Laser Photon. Rev., 7, N 2 (2013) 171—187, doi: 10.1002/lpor.201200003

2. M. Belekoukia, E. Kalamaras, J. Tan, F. Vilela, S. Garcia, M. Maroto-Valer, J. Xuan. Appl. Energy, 247 (2019) 517—524, doi: 10.1016/j.apenergy.2019.04.069

3. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao. T. Nagao. Opt. Mater. Express, 6, N 2 (2016) 640—648, doi: 10.1364/OME.6.000640

4. M. Cui, S. Liu, B. Song, D. Guo, J. Wang, G. Hu, Y. Su, Y. He. Nano-Micro Lett., 11, N 73 (2019) 1—15, doi: 10.1007/s40820-019-0306-9

5. M. Chen, Y. He, J. Huang, J. Zhu. Energy Conversion and Management, 127 (2016) 293—300, doi: 10.1016/j.enconman.2016.09.015

6. D. Wu, H. Zhu, L. Wang, L. Liu. Current Nanosci., 5, N 1 (2009) 103—112, doi: 10.2174/157341309787314548

7. H. Tyagi, P. Phelan, R. Prasher. J. Sol. Energy Eng., 131, N 4 (2009) 041004(1—7), doi: 10.1115/1.3197562

8. H. Moghaieb, D. Padmanaban, P. Kumar, A. Ul Haq, C. Maddi, R. McGlynn, M. Arredondo, Singh, P. Maguire, D. Mariotti. Nano Energy, 108 (2023) 108112, doi: 10.1016/j.nanoen.2022.108112

9. R. McGlynn, S. Chakrabarti, B. Alessi, H. S. Moghaieb, P. Maguire, H. Singh, D. Mariotti. Solar Energy, 203 (2020) 37—45, doi: 10.1016/j.solener.2020.04.004

10. Z. Said, M. H. Sajid, R. Saidur, G. A. Mahdiraji, N. A. Rahim. Numerical Heat Transfer A: Applications, 67, N 9 (2015) 1010—1027, doi: 10.1080/10407782.2014.955344

11. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, Md. M. Rahman, T. J. Zhang, G. Chen. Nano Energy, 17 (2015) 290—301, doi: 10.1016/j.nanoen.2015.08.021

12. C. L. L. Beicker, M. Amjad, E. P. Bandarra Filho, D. Wen. Solar Energy Materials and Solar Cells, 188 (2018) 51—65, doi: 10.1016/j.solmat.2018.08.013

13. A. Gimeno-Furio, L. Hernandez, S. Barison, F. Agresti, D. Cabaleiro, S. Mancin. Solar Energy, 191 (2019) 323—331, doi: 10.1016/j.solener.2019.09.012

14. V. K. Pustovalov. SN Appl. Sci., 1 (2019) 356(1—25), doi: 10.1007/s42452-019-0370-2

15. M. Chen, Y. He, J. Zhu, D. Wen. Appl. Energy, 181 (2016) 65—74, doi: 10.1016/j.apenergy.2016.08.054

16. A. R. Mallah, S. N. Kazi, M. N. M. Zubir, A. Badarudin. Appl. Energy, 229 (2018) 505—521, doi: 10.1016/j.apenergy.2018.07.113

17. J. Jeon, S. Park, B. J. Lee. Solar Energy, 132 (2016) 247—256, doi: 10.1016/j.solener.2016.03.022

18. M. Mehrali, M. K. Ghatkesar, R. Pecnik. Appl. Energy, 224 (2018) 103—115, doi: 10.1016/j.apenergy.2018.04.065

19. E. T. Ulset, P. Kosinski, Y. Zabednova, O. V. Zhdaneev, P. G. Struchalin, B. V. Balakin. Nano Energy, 50 (2018) 339—346, doi: 10.1016/j.nanoen.2018.05.050.

20. J. Zou, R. K. Baldwin, K. A. Pettigrew, S. M. Kauzlarich. Nano Lett., 4, N 7 (2004) 1181—1186, doi: 10.1021/nl0497373

21. R. A. Bley, S. M. Kauzlarich. J. Am. Chem. Soc., 118, N 49 (1996) 12461—12462, doi: 10.1021/ja962787s

22. G. B. Teh, S. Nagalingam, R. D. Tilley, S. Ramesh, Y. S. Lim. Zeitschrift für Physikalische Chemie, 223 (2009) 1417—1426, doi: 10.1524/zpch.2009.5466

23. A. Fojtik, A. Henglein. Chem. Phys. Lett., 221, N 5-6 (1994) 363—367

24. R. M. Sankaran, D. Holunga, R. C. Flagan, K. P. Giapis. Nano Lett., 5, N 3 (2005) 537—541, doi: 10.1021/nl0480060

25. L. Mangolini, E. Thimsen, U. Kortshagen. Nano Lett., 5, N 4 (2005) 655—659, doi: 10.1021/nl050066y

26. S. Lee, W. J. Cho, C. S. Chin, I. K. Han, W. J. Choi, Y. J. Park, J. D. Song, J. I. Lee. Jpn. J. Appl. Phys., 43, N 6B (2004) L784, doi: 10.1143/JJAP.43.L784

27. D. Zhang, B. Gökce, S. Barcikowski. Chem. Rev., 117, N 5 (2017) 3990—4103, doi: 10.1021/acs.chemrev.6b00468

28. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski. Chem. Eur. J., 26 (2020) 9206—9242, doi: 10.1002/chem.202000686

29. M. Censabella, V. Torrisi, G. Compagnini, M. G. Grimaldi, F. Ruffino. Physica E: Low-Dimensional Systems and Nanostructures, 118 (2020) 113887, doi: 10.1016/j.physe.2019.113887

30. F. Stokker-Cheregi, T. Acsente, I. Enculescu, C. Grisolia, G. Dinescu. Dig. J. Nanomater. Biostruct., 7, N 4 (2012) 1569—1576

31. D. Riabinina, M. Chaker, J. Margot. Nanotechnology, 23 (2012) 135603—135607, doi: 10.1088/0957-4484/23/13/135603

32. J. S. Jeon, C. S. Yeh. J. Chin. Chem. Soc., 45 (1998) 721—726, doi: 10.1002/jccs.199800109

33. A. Kanitz, M.-R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans. Plasma Sources Sci. Technol., 28, N 10 (2019) 103001, doi: 10.1088/1361-6595/ab3dbe

34. M. Dell’Aglio, A. De Giacomo. Appl. Sci., 11, N 21 (2021) 10344, doi: 10.3390/app112110344

35. K. Choudhury, R. K. Singh, P. Kumar, M. Ranjan, A. Srivastava, A. Kumar. Nano-Structures and Nano-Objects, 17 (2019) 129—137, doi: 10.1016/j.nanoso.2018.12.006

36. Y. Jiang, P. Liu, Y. Liang, H. Li, G. Yang. Appl. Phys. A, 105 (2011) 903—907, doi: 10.1007/s00339-011-6557-z

37. H. W. Kang, A. J. Welch. J. Appl. Phys., 101 (2007) 083101, doi: 10.1063/1.2715746

38. K. L. McGilvray, C. Fasciani, C. J. Bueno-Alejo, R. Schwartz-Narbonne, J. C. Scaiano. Langmuir, 28, N 46 (2012) 16148—16155, doi:10.1021/la302814v

39. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, J. Qiu. Phys. Chem. Chem. Phys., 13 (2011) 20255—20261, doi: 10.1039/c1cp21366k

40. H. Elangovan, S. Sengupta, R. Narayanan, K. Chattopadhyay. J. Mater. Sci., 56, N 2 (2020) 1515—1526, doi: 10.1007/s10853-020-05374-z

41. J. P. Wilcoxon, G. A. Samara, P. N. Provencio. Phys Rev B, 60 (1999) 2704—2714, doi: 10.1103/PhysRevB.60.2704

42. L. M. Liz-Marzán, M. Giersig, P. Mulvaney. Langmuir, 12 (1996) 4329—4335, doi: 10.1021/la9601871

43. P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, Y. Mo. Opt. Commun., 270, N 2 (2007) 391—395, doi: 10.1016/j.optcom.2006.09.050

44. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi. Opt. Mater. Express, 2, N 5 (2012) 510—518, doi: 10.1364/OME.2.000510

45. M. H. Mahdieh, B. Fattahi. Opt. Laser Technol., 75 (2015) 188—196, doi: 10.1016/j.optlastec.2015.07.006

46. N. E. Jasbi, D. Dorranian. Opt. Quant. Electron., 49, N 6 (2017) 1—13, doi: 10.1007/s11082-017-1041-4

47. Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki. J. Colloid Interface Sci., 300, N 2 (2006) 612—615, doi: 10.1016/j.jcis.2006.04.005

48. E. Solati, D. Dorranian. Bull. Mater. Sci., 39, N 7 (2016) 1677—1684, doi: 10.1007/s12034-016-1315-7

49. Q. Shabir, A. Pokale, A. Loni, D. R. Johnson, L.T. Canham, R. Fenollosa, M. Tymczenko, H. Rodríguez, F. Meseguer, A. Cros, A. Cantarero. Silicon, 3 (2011) 173—176, doi: 10.1007/s12633-0119097-4

50. G. Marcins, J. Butikova, I. Tale, B. Polyakov, R. Kalendarjov, A. Muhin. IOP Conf. Ser. Mater. Sci. Eng., 23, N 1 (2011) 012035, doi: 10.1088/1757-899X/23/1/012035

51. C. Meier, S. Luttjohann, V. G. Kravets, H. Nienhaus, A. Lorke, H. Wiggers. Physica E, 32, N 1-2 (2006) 155—158, doi: 10.1016/j.physe.2005.12.030

52. Y. Li, L. Yue, Y. Luo, W. Liu, M. Li. Opt. Express, 24 (2016) A1075—A1082, doi: 10.1364/OE.24.0A1075

53. C. F. Guo, T. Sun, F. Cao, Q. Liu, Z. F. Ren. Light Sci. Appl., 3 (2014) e161, doi: 10.1038/lsa.2014.42

54. D. Zhang, B. Gökce, C. Notthoff, S. Barcikowski. Sci. Rep., 5, N 1 (2015) 14405, doi: 10.1038/srep13661

55. B. Dutta, E. Kar, N. Bose, S. Mukherjee. RSC Adv., 5 (2015) 105422—105434, doi: 10.1039/C5RA21903E

56. Y. Abboud, T. Saffaj, A. Chagraoui, A. E. Bouari, K. Brouzi, O. Tanane, B. Ihssane. Appl. Nanosci., 4 (2014) 571—576, doi: 10.1007/s13204-013-0233-x

57. G. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, J.-L. Gallani. Nanoscale, 4 (2012) 5244—5258, doi: 10.1039/c2nr30640a

58. S. Petrović, B. Salatic, D. Milovanović, V. Lazovic, L. Živković, M. Trtica, B. Jelenkovic. J. Opt., 17 (2015) 025402, doi: 10.1088/2040-8978/17/2/025402

59. T. Boldoo, J. Ham, E. Kim, H. Cho. Energies, 13, N 21 (2020) 5748, doi: 10.3390/en13215748

60. A. Ferraro, P. Cerza, V. Mussi, L. Maiolo, A. Convertino, R. Caputo. J. Phys. Chem. C, 125, N 25 (2021) 14134—14140, doi: 10.1021/acs.jpcc.1c03732

61. W.W. Gärtner. Phys. Rev. 122, N 2 (1961) 419, doi: 10.1103/PhysRev.122.419


Review

For citations:


Tarasenka N.N., Kornev V.G., Urmanov B.D., Pashayan S.T., Lutsenko E.V., Tarasenko N.V. Laser Synthesis and Optical Properties of the Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):253-265. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-2-253-265

Views: 137


ISSN 0514-7506 (Print)