Laser Synthesis and Optical Properties of the Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation
https://doi.org/10.47612/0514-7506-2023-90-2-253-265
Abstract
The dependencies of the morphology and optical properties of silicon nanostructures on the laser ablation synthesis conditions were established, namely on the laser focusing conditions, laser pulse repetition rate, as well as temperature and composition of the solution. The regularities obtained were used for the development of the method for Si-Ag and Si-Ag-Сu hybrid metal-silicon nanostructures formation. It has been demonstrated that the obtained broadband absorption of the Si-Ag-Cu nanoparticles is promising for the application in nanofluids for photothermal energy conversion of solar radiation.
About the Authors
N. N. TarasenkaBelarus
Minsk
V. G. Kornev
Belarus
Minsk
B. D. Urmanov
Belarus
Minsk
S. T. Pashayan
Armenia
Ashtarak
E. V. Lutsenko
Belarus
Minsk
N. V. Tarasenko
Belarus
Minsk
References
1. G. Baffou, R. Quidant. Laser Photon. Rev., 7, N 2 (2013) 171—187, doi: 10.1002/lpor.201200003
2. M. Belekoukia, E. Kalamaras, J. Tan, F. Vilela, S. Garcia, M. Maroto-Valer, J. Xuan. Appl. Energy, 247 (2019) 517—524, doi: 10.1016/j.apenergy.2019.04.069
3. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao. T. Nagao. Opt. Mater. Express, 6, N 2 (2016) 640—648, doi: 10.1364/OME.6.000640
4. M. Cui, S. Liu, B. Song, D. Guo, J. Wang, G. Hu, Y. Su, Y. He. Nano-Micro Lett., 11, N 73 (2019) 1—15, doi: 10.1007/s40820-019-0306-9
5. M. Chen, Y. He, J. Huang, J. Zhu. Energy Conversion and Management, 127 (2016) 293—300, doi: 10.1016/j.enconman.2016.09.015
6. D. Wu, H. Zhu, L. Wang, L. Liu. Current Nanosci., 5, N 1 (2009) 103—112, doi: 10.2174/157341309787314548
7. H. Tyagi, P. Phelan, R. Prasher. J. Sol. Energy Eng., 131, N 4 (2009) 041004(1—7), doi: 10.1115/1.3197562
8. H. Moghaieb, D. Padmanaban, P. Kumar, A. Ul Haq, C. Maddi, R. McGlynn, M. Arredondo, Singh, P. Maguire, D. Mariotti. Nano Energy, 108 (2023) 108112, doi: 10.1016/j.nanoen.2022.108112
9. R. McGlynn, S. Chakrabarti, B. Alessi, H. S. Moghaieb, P. Maguire, H. Singh, D. Mariotti. Solar Energy, 203 (2020) 37—45, doi: 10.1016/j.solener.2020.04.004
10. Z. Said, M. H. Sajid, R. Saidur, G. A. Mahdiraji, N. A. Rahim. Numerical Heat Transfer A: Applications, 67, N 9 (2015) 1010—1027, doi: 10.1080/10407782.2014.955344
11. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, Md. M. Rahman, T. J. Zhang, G. Chen. Nano Energy, 17 (2015) 290—301, doi: 10.1016/j.nanoen.2015.08.021
12. C. L. L. Beicker, M. Amjad, E. P. Bandarra Filho, D. Wen. Solar Energy Materials and Solar Cells, 188 (2018) 51—65, doi: 10.1016/j.solmat.2018.08.013
13. A. Gimeno-Furio, L. Hernandez, S. Barison, F. Agresti, D. Cabaleiro, S. Mancin. Solar Energy, 191 (2019) 323—331, doi: 10.1016/j.solener.2019.09.012
14. V. K. Pustovalov. SN Appl. Sci., 1 (2019) 356(1—25), doi: 10.1007/s42452-019-0370-2
15. M. Chen, Y. He, J. Zhu, D. Wen. Appl. Energy, 181 (2016) 65—74, doi: 10.1016/j.apenergy.2016.08.054
16. A. R. Mallah, S. N. Kazi, M. N. M. Zubir, A. Badarudin. Appl. Energy, 229 (2018) 505—521, doi: 10.1016/j.apenergy.2018.07.113
17. J. Jeon, S. Park, B. J. Lee. Solar Energy, 132 (2016) 247—256, doi: 10.1016/j.solener.2016.03.022
18. M. Mehrali, M. K. Ghatkesar, R. Pecnik. Appl. Energy, 224 (2018) 103—115, doi: 10.1016/j.apenergy.2018.04.065
19. E. T. Ulset, P. Kosinski, Y. Zabednova, O. V. Zhdaneev, P. G. Struchalin, B. V. Balakin. Nano Energy, 50 (2018) 339—346, doi: 10.1016/j.nanoen.2018.05.050.
20. J. Zou, R. K. Baldwin, K. A. Pettigrew, S. M. Kauzlarich. Nano Lett., 4, N 7 (2004) 1181—1186, doi: 10.1021/nl0497373
21. R. A. Bley, S. M. Kauzlarich. J. Am. Chem. Soc., 118, N 49 (1996) 12461—12462, doi: 10.1021/ja962787s
22. G. B. Teh, S. Nagalingam, R. D. Tilley, S. Ramesh, Y. S. Lim. Zeitschrift für Physikalische Chemie, 223 (2009) 1417—1426, doi: 10.1524/zpch.2009.5466
23. A. Fojtik, A. Henglein. Chem. Phys. Lett., 221, N 5-6 (1994) 363—367
24. R. M. Sankaran, D. Holunga, R. C. Flagan, K. P. Giapis. Nano Lett., 5, N 3 (2005) 537—541, doi: 10.1021/nl0480060
25. L. Mangolini, E. Thimsen, U. Kortshagen. Nano Lett., 5, N 4 (2005) 655—659, doi: 10.1021/nl050066y
26. S. Lee, W. J. Cho, C. S. Chin, I. K. Han, W. J. Choi, Y. J. Park, J. D. Song, J. I. Lee. Jpn. J. Appl. Phys., 43, N 6B (2004) L784, doi: 10.1143/JJAP.43.L784
27. D. Zhang, B. Gökce, S. Barcikowski. Chem. Rev., 117, N 5 (2017) 3990—4103, doi: 10.1021/acs.chemrev.6b00468
28. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski. Chem. Eur. J., 26 (2020) 9206—9242, doi: 10.1002/chem.202000686
29. M. Censabella, V. Torrisi, G. Compagnini, M. G. Grimaldi, F. Ruffino. Physica E: Low-Dimensional Systems and Nanostructures, 118 (2020) 113887, doi: 10.1016/j.physe.2019.113887
30. F. Stokker-Cheregi, T. Acsente, I. Enculescu, C. Grisolia, G. Dinescu. Dig. J. Nanomater. Biostruct., 7, N 4 (2012) 1569—1576
31. D. Riabinina, M. Chaker, J. Margot. Nanotechnology, 23 (2012) 135603—135607, doi: 10.1088/0957-4484/23/13/135603
32. J. S. Jeon, C. S. Yeh. J. Chin. Chem. Soc., 45 (1998) 721—726, doi: 10.1002/jccs.199800109
33. A. Kanitz, M.-R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans. Plasma Sources Sci. Technol., 28, N 10 (2019) 103001, doi: 10.1088/1361-6595/ab3dbe
34. M. Dell’Aglio, A. De Giacomo. Appl. Sci., 11, N 21 (2021) 10344, doi: 10.3390/app112110344
35. K. Choudhury, R. K. Singh, P. Kumar, M. Ranjan, A. Srivastava, A. Kumar. Nano-Structures and Nano-Objects, 17 (2019) 129—137, doi: 10.1016/j.nanoso.2018.12.006
36. Y. Jiang, P. Liu, Y. Liang, H. Li, G. Yang. Appl. Phys. A, 105 (2011) 903—907, doi: 10.1007/s00339-011-6557-z
37. H. W. Kang, A. J. Welch. J. Appl. Phys., 101 (2007) 083101, doi: 10.1063/1.2715746
38. K. L. McGilvray, C. Fasciani, C. J. Bueno-Alejo, R. Schwartz-Narbonne, J. C. Scaiano. Langmuir, 28, N 46 (2012) 16148—16155, doi:10.1021/la302814v
39. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, J. Qiu. Phys. Chem. Chem. Phys., 13 (2011) 20255—20261, doi: 10.1039/c1cp21366k
40. H. Elangovan, S. Sengupta, R. Narayanan, K. Chattopadhyay. J. Mater. Sci., 56, N 2 (2020) 1515—1526, doi: 10.1007/s10853-020-05374-z
41. J. P. Wilcoxon, G. A. Samara, P. N. Provencio. Phys Rev B, 60 (1999) 2704—2714, doi: 10.1103/PhysRevB.60.2704
42. L. M. Liz-Marzán, M. Giersig, P. Mulvaney. Langmuir, 12 (1996) 4329—4335, doi: 10.1021/la9601871
43. P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, Y. Mo. Opt. Commun., 270, N 2 (2007) 391—395, doi: 10.1016/j.optcom.2006.09.050
44. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi. Opt. Mater. Express, 2, N 5 (2012) 510—518, doi: 10.1364/OME.2.000510
45. M. H. Mahdieh, B. Fattahi. Opt. Laser Technol., 75 (2015) 188—196, doi: 10.1016/j.optlastec.2015.07.006
46. N. E. Jasbi, D. Dorranian. Opt. Quant. Electron., 49, N 6 (2017) 1—13, doi: 10.1007/s11082-017-1041-4
47. Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki. J. Colloid Interface Sci., 300, N 2 (2006) 612—615, doi: 10.1016/j.jcis.2006.04.005
48. E. Solati, D. Dorranian. Bull. Mater. Sci., 39, N 7 (2016) 1677—1684, doi: 10.1007/s12034-016-1315-7
49. Q. Shabir, A. Pokale, A. Loni, D. R. Johnson, L.T. Canham, R. Fenollosa, M. Tymczenko, H. Rodríguez, F. Meseguer, A. Cros, A. Cantarero. Silicon, 3 (2011) 173—176, doi: 10.1007/s12633-0119097-4
50. G. Marcins, J. Butikova, I. Tale, B. Polyakov, R. Kalendarjov, A. Muhin. IOP Conf. Ser. Mater. Sci. Eng., 23, N 1 (2011) 012035, doi: 10.1088/1757-899X/23/1/012035
51. C. Meier, S. Luttjohann, V. G. Kravets, H. Nienhaus, A. Lorke, H. Wiggers. Physica E, 32, N 1-2 (2006) 155—158, doi: 10.1016/j.physe.2005.12.030
52. Y. Li, L. Yue, Y. Luo, W. Liu, M. Li. Opt. Express, 24 (2016) A1075—A1082, doi: 10.1364/OE.24.0A1075
53. C. F. Guo, T. Sun, F. Cao, Q. Liu, Z. F. Ren. Light Sci. Appl., 3 (2014) e161, doi: 10.1038/lsa.2014.42
54. D. Zhang, B. Gökce, C. Notthoff, S. Barcikowski. Sci. Rep., 5, N 1 (2015) 14405, doi: 10.1038/srep13661
55. B. Dutta, E. Kar, N. Bose, S. Mukherjee. RSC Adv., 5 (2015) 105422—105434, doi: 10.1039/C5RA21903E
56. Y. Abboud, T. Saffaj, A. Chagraoui, A. E. Bouari, K. Brouzi, O. Tanane, B. Ihssane. Appl. Nanosci., 4 (2014) 571—576, doi: 10.1007/s13204-013-0233-x
57. G. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, J.-L. Gallani. Nanoscale, 4 (2012) 5244—5258, doi: 10.1039/c2nr30640a
58. S. Petrović, B. Salatic, D. Milovanović, V. Lazovic, L. Živković, M. Trtica, B. Jelenkovic. J. Opt., 17 (2015) 025402, doi: 10.1088/2040-8978/17/2/025402
59. T. Boldoo, J. Ham, E. Kim, H. Cho. Energies, 13, N 21 (2020) 5748, doi: 10.3390/en13215748
60. A. Ferraro, P. Cerza, V. Mussi, L. Maiolo, A. Convertino, R. Caputo. J. Phys. Chem. C, 125, N 25 (2021) 14134—14140, doi: 10.1021/acs.jpcc.1c03732
61. W.W. Gärtner. Phys. Rev. 122, N 2 (1961) 419, doi: 10.1103/PhysRev.122.419
Review
For citations:
Tarasenka N.N., Kornev V.G., Urmanov B.D., Pashayan S.T., Lutsenko E.V., Tarasenko N.V. Laser Synthesis and Optical Properties of the Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):253-265. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-2-253-265