Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave

https://doi.org/10.47612/0514-7506-2023-90-2-299-309

Abstract

The equations are derived to describe scattering and absorption of light by a normally illuminated monolayer of identical spherical particles in a homogeneous light-absorbing medium (matrix). They are based on the quasicrystalline approximation, mean-field approximation, and multipole expansion of fields and tensor Green’s function in terms of vector spherical wave functions. The results are presented of numerical analysis of the coefficients of coherent transmission and reflection, incoherent scattering, and absorption of composite systems (a monolayer of gold (Au) nanoparticles in fullerene (C60) matrix and a monolayer of silver (Ag) nanoparticles in copper phthalocyanine (CuPc) matrix) in visible spectrum at different concentrations and sizes of particles. The comparison is made of the dependences of the wavelength of the absorption plasmon resonance maximum on the filling factor of the partially ordered monolayer, calculated with (in the quasicrystalline approximation) and without (in the interference approximation) taking into account multiple scattering of waves. The calculation results are in qualitative agreement with the know experimental data on the red-shift of the resonance with increasing in the monolayer filling factor. The derived equations can be used in solving problems of thin-film optics, developing photonic and optoelectronic devices containing absorbing matrices.

About the Authors

N. A. Loiko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



A. A. Miskevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. A. Loiko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. B. Daneshfard, B. Dalfardi, G. S. M. Nezhad. J. Med. Biography, 24, N 2 (2016) 227—231

2. Б. И. Степанов. Введение в современную оптику. Фотометрия. О возможном и невозможном в оптике, Минск, Навука і тэхніка (1989)

3. Б. И. Степанов. Введение в современную оптику. Квантовая теория взаимодействия света и вещества, Минск, Навука і тэхніка (1990)

4. Б. И. Степанов. Введение в современную оптику. Поглощение и испускание света квантовыми системами, Минск, Навука і тэхніка (1991)

5. О. П. Гирин, Б. И. Степанов. ЖЭТФ, 27 (1954) 467—478

6. K. M. Hong. J. Opt. Soc. Am., 70 (1980) 821—826

7. A. Modinos. Physica, 141A (1987) 575—588

8. C. Soci, G. Adamo, D. Cortecchia, K. Wang. Opt. Mater., X, N 17 (2023) 100214, https://doi.org/10.1016/j.omx.2022.100214

9. L. Novotny, B. Hecht. Principles of Nano-Optics, Cambridge University Press (2012)

10. M. Quinten. Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley (2010)

11. A. García-Valenzuela, E. Gutiérrez-Reyes, R. G. Barrera. J. Opt. Soc. Am. A, 29 (2012) 1161—1179

12. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Science, 354 (2016) 2472(1—8)

13. V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Chem Rev., 118, 5912—5951 (2018)

14. A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 113 (2011) 1—13

15. V. A. Loiko, A. A. Miskevich. Opt. Spectr., 115 (2013) 274—282

16. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 151 (2015) 260—268

17. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 35 (2018) 108—118

18. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 126 (2018) 159—173

19. N. A. Loiko, A. A. Miskevich, V. A. Loiko. Opt. Spectr., 125 (2018) 655—666

20. V. A. Loiko, A. A. Miskevich. In: Multiple Light Scattering, Radiative Transfer and Remote, Ed. A. A. Kokhanovsky, 1, ch. 2, Sensing Springer Series in Light Scattering, Springer (2018) 101—230

21. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 131 (2020) 227—243

22. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. B, 38 (2021) C22—C32

23. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 266 (2021) 107571(1—20)

24. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 289 (2022) 108291(1—9)

25. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 39 (2022) C36—C44

26. M. Lax. Phys. Rev., 85 (1952) 621—629

27. B. P. Rand, P. Peumans, S. R. Forrest. J. Appl. Phys., 96 (2004) 7519

28. J.-Y. Lee, P. Peumans. Opt. Exp., 18 (2010) 10078—10087

29. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma. Nat. Mater., 11 (2012) 1017—1022

30. F. L.-P. Sergio, G. Rodrigo, L. Martín-Moreno. Proc. IEEE, 104 (2016) 2288—2306

31. M. Olaimat, L. Yousefi, O. Ramahi. J. Opt. Soc. Am. B, 38 (2021) 638—651

32. W. Yang, S. Feng, X. Zhang, Y. Wang, C. Li, L. Zhang, J. Zhao, G. Gurzadyan, S. Tao. ACS Appl. Mater. Interfaces, 13 (2021) 38722—38731

33. W. C. Mundy, J. A. Roux, A. M. Smith. J. Opt. Soc. Am., 64 (1974) 1593—1597

34. C. F. Bohren, D. P. Gilra. J. Colloid Interface Sci., 72 (1979) 215—221

35. I. W. Sudiarta, P. Chylek. J. Quant. Spectr. Rad. Transf., 70 (2001) 709—714

36. G. Videen, W. Sun. Appl. Opt., 42 (2003) 6724—6727

37. J. Yin, L. Pilon. J. Opt. Soc. Am. A, 23 (2006) 2784—2796

38. Q. Fu, W. Sun. J. Quant. Spectr. Rad. Transf., 100 (2006) 137—142

39. Р. А. Дынич, А. Н. Понявина, В. В. Филиппов. Журн. прикл. спектр., 76, № 5 (2009) 746—751 [R. A. Dynich, A. N. Ponyavina, V. V. Filippov. J. Appl. Spectr., 76 (2009) 704—710]

40. M. I. Mishchenko, G. Videen, P. Yang. Opt. Lett., 42 (2017) 4873—4876

41. M. I. Mishchenko, J. M. Dlugach. J. Quant. Spectr. Rad. Transf., 211 (2018) 179—187

42. L. X. Ma, B. W. Xie, C. C. Wang, L. H. Liu. J. Quant. Spectr. Rad. Transf., 230 (2019) 24—35

43. J. Dong, W. Zhang, L. Liu. Opt. Exp., 29 (2021) 7690—7705

44. N. G. Khlebtsov. J. Quant. Spectr. Rad. Transf., 280 (2022) 108069

45. J. Ziman. Models of Disorder, Cambridge University (1979)

46. А. П. Иванов, В. А. Лойко, В. П. Дик. Распространение света в плотноупакованных дисперсных средах, Минск, Наука и техника (1988)

47. P. M. Morse, H. Feshbach. Methods of Theoretical Physics, New York, McGraw-Hill Book (1953)

48. V. A. Babenko, L. G. Astafyeva, V. N. Kuzmin. Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles, Berlin, Springer (2003)

49. Ch.-T. Tai. Dyadic Green Functions in Electromagnetic Theory, New York, IEEE Press (1993)

50. O. R. Cruzan. Q. Appl. Math., 20 (1962) 33—40

51. J. K. Percus, G. J. Yevick. Phys. Rev., 110 (1958) 1—13

52. R. A. Dynich, A. D. Zamkovets, A. N. Ponyavina, E. М. Shpilevsky. Proc. NAS of Belarus. Phys. Math. Ser., 55 (2019) 232—241

53. E. D. Palik. Handbook of Optical Constants of Solids, 1, Academic (1985)

54. V. Sittinger, P. S. C. Schulze, Ch. Messmer, A. Pflug, J. Ch. Goldschmidt. Opt. Exp., 30 (2022) 37957—37970


Review

For citations:


Loiko N.A., Miskevich A.A., Loiko V.A. Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):299-309. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-2-299-309

Views: 113


ISSN 0514-7506 (Print)