![Open Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/opened.png)
![Restricted Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/closed.png)
Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave
https://doi.org/10.47612/0514-7506-2023-90-2-299-309
Abstract
The equations are derived to describe scattering and absorption of light by a normally illuminated monolayer of identical spherical particles in a homogeneous light-absorbing medium (matrix). They are based on the quasicrystalline approximation, mean-field approximation, and multipole expansion of fields and tensor Green’s function in terms of vector spherical wave functions. The results are presented of numerical analysis of the coefficients of coherent transmission and reflection, incoherent scattering, and absorption of composite systems (a monolayer of gold (Au) nanoparticles in fullerene (C60) matrix and a monolayer of silver (Ag) nanoparticles in copper phthalocyanine (CuPc) matrix) in visible spectrum at different concentrations and sizes of particles. The comparison is made of the dependences of the wavelength of the absorption plasmon resonance maximum on the filling factor of the partially ordered monolayer, calculated with (in the quasicrystalline approximation) and without (in the interference approximation) taking into account multiple scattering of waves. The calculation results are in qualitative agreement with the know experimental data on the red-shift of the resonance with increasing in the monolayer filling factor. The derived equations can be used in solving problems of thin-film optics, developing photonic and optoelectronic devices containing absorbing matrices.
About the Authors
N. A. LoikoBelarus
Minsk
A. A. Miskevich
Belarus
Minsk
V. A. Loiko
Belarus
Minsk
References
1. B. Daneshfard, B. Dalfardi, G. S. M. Nezhad. J. Med. Biography, 24, N 2 (2016) 227—231
2. Б. И. Степанов. Введение в современную оптику. Фотометрия. О возможном и невозможном в оптике, Минск, Навука і тэхніка (1989)
3. Б. И. Степанов. Введение в современную оптику. Квантовая теория взаимодействия света и вещества, Минск, Навука і тэхніка (1990)
4. Б. И. Степанов. Введение в современную оптику. Поглощение и испускание света квантовыми системами, Минск, Навука і тэхніка (1991)
5. О. П. Гирин, Б. И. Степанов. ЖЭТФ, 27 (1954) 467—478
6. K. M. Hong. J. Opt. Soc. Am., 70 (1980) 821—826
7. A. Modinos. Physica, 141A (1987) 575—588
8. C. Soci, G. Adamo, D. Cortecchia, K. Wang. Opt. Mater., X, N 17 (2023) 100214, https://doi.org/10.1016/j.omx.2022.100214
9. L. Novotny, B. Hecht. Principles of Nano-Optics, Cambridge University Press (2012)
10. M. Quinten. Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley (2010)
11. A. García-Valenzuela, E. Gutiérrez-Reyes, R. G. Barrera. J. Opt. Soc. Am. A, 29 (2012) 1161—1179
12. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Science, 354 (2016) 2472(1—8)
13. V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Chem Rev., 118, 5912—5951 (2018)
14. A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 113 (2011) 1—13
15. V. A. Loiko, A. A. Miskevich. Opt. Spectr., 115 (2013) 274—282
16. A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 151 (2015) 260—268
17. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 35 (2018) 108—118
18. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 126 (2018) 159—173
19. N. A. Loiko, A. A. Miskevich, V. A. Loiko. Opt. Spectr., 125 (2018) 655—666
20. V. A. Loiko, A. A. Miskevich. In: Multiple Light Scattering, Radiative Transfer and Remote, Ed. A. A. Kokhanovsky, 1, ch. 2, Sensing Springer Series in Light Scattering, Springer (2018) 101—230
21. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Exp. Theor. Phys., 131 (2020) 227—243
22. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. B, 38 (2021) C22—C32
23. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 266 (2021) 107571(1—20)
24. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Quant. Spectr. Rad. Transf., 289 (2022) 108291(1—9)
25. N. A. Loiko, A. A. Miskevich, V. A. Loiko. J. Opt. Soc. Am. A, 39 (2022) C36—C44
26. M. Lax. Phys. Rev., 85 (1952) 621—629
27. B. P. Rand, P. Peumans, S. R. Forrest. J. Appl. Phys., 96 (2004) 7519
28. J.-Y. Lee, P. Peumans. Opt. Exp., 18 (2010) 10078—10087
29. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma. Nat. Mater., 11 (2012) 1017—1022
30. F. L.-P. Sergio, G. Rodrigo, L. Martín-Moreno. Proc. IEEE, 104 (2016) 2288—2306
31. M. Olaimat, L. Yousefi, O. Ramahi. J. Opt. Soc. Am. B, 38 (2021) 638—651
32. W. Yang, S. Feng, X. Zhang, Y. Wang, C. Li, L. Zhang, J. Zhao, G. Gurzadyan, S. Tao. ACS Appl. Mater. Interfaces, 13 (2021) 38722—38731
33. W. C. Mundy, J. A. Roux, A. M. Smith. J. Opt. Soc. Am., 64 (1974) 1593—1597
34. C. F. Bohren, D. P. Gilra. J. Colloid Interface Sci., 72 (1979) 215—221
35. I. W. Sudiarta, P. Chylek. J. Quant. Spectr. Rad. Transf., 70 (2001) 709—714
36. G. Videen, W. Sun. Appl. Opt., 42 (2003) 6724—6727
37. J. Yin, L. Pilon. J. Opt. Soc. Am. A, 23 (2006) 2784—2796
38. Q. Fu, W. Sun. J. Quant. Spectr. Rad. Transf., 100 (2006) 137—142
39. Р. А. Дынич, А. Н. Понявина, В. В. Филиппов. Журн. прикл. спектр., 76, № 5 (2009) 746—751 [R. A. Dynich, A. N. Ponyavina, V. V. Filippov. J. Appl. Spectr., 76 (2009) 704—710]
40. M. I. Mishchenko, G. Videen, P. Yang. Opt. Lett., 42 (2017) 4873—4876
41. M. I. Mishchenko, J. M. Dlugach. J. Quant. Spectr. Rad. Transf., 211 (2018) 179—187
42. L. X. Ma, B. W. Xie, C. C. Wang, L. H. Liu. J. Quant. Spectr. Rad. Transf., 230 (2019) 24—35
43. J. Dong, W. Zhang, L. Liu. Opt. Exp., 29 (2021) 7690—7705
44. N. G. Khlebtsov. J. Quant. Spectr. Rad. Transf., 280 (2022) 108069
45. J. Ziman. Models of Disorder, Cambridge University (1979)
46. А. П. Иванов, В. А. Лойко, В. П. Дик. Распространение света в плотноупакованных дисперсных средах, Минск, Наука и техника (1988)
47. P. M. Morse, H. Feshbach. Methods of Theoretical Physics, New York, McGraw-Hill Book (1953)
48. V. A. Babenko, L. G. Astafyeva, V. N. Kuzmin. Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles, Berlin, Springer (2003)
49. Ch.-T. Tai. Dyadic Green Functions in Electromagnetic Theory, New York, IEEE Press (1993)
50. O. R. Cruzan. Q. Appl. Math., 20 (1962) 33—40
51. J. K. Percus, G. J. Yevick. Phys. Rev., 110 (1958) 1—13
52. R. A. Dynich, A. D. Zamkovets, A. N. Ponyavina, E. М. Shpilevsky. Proc. NAS of Belarus. Phys. Math. Ser., 55 (2019) 232—241
53. E. D. Palik. Handbook of Optical Constants of Solids, 1, Academic (1985)
54. V. Sittinger, P. S. C. Schulze, Ch. Messmer, A. Pflug, J. Ch. Goldschmidt. Opt. Exp., 30 (2022) 37957—37970
Review
For citations:
Loiko N.A., Miskevich A.A., Loiko V.A. Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):299-309. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-2-299-309