Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effect of Stacking 2D Lead Chloride Perovskites into Vertical Heterostructures on Photoluminescence Intensity

Abstract

Two-dimensional organic-inorganic hybrid lead halide perovskites are of interest for photovoltaic and light emitting devices due to their relative stability when compared to bulk lead halide perovskites and favorable properties that can be tuned. Tuning of the material can be performed by adjusting halide composition or by taking advantage of confinement effects. Here we use density functional theory and excited state dynamics treated by reduced density matrix method to examine the effects that varying the thickness of the perovskite layer has on the ground state and excited state photo-physical properties of the materials, further we explore the effects of a vertical heterostructure of perovskite layers. Nonadiabatic couplings were computed based on the on-the-fly approach along a molecular dynamic trajectory at ambient temperatures. Density matrix-based equation of motion for electronic degrees of freedom is used to calculate the dynamics of electronic degrees of freedom. We find that the vertical stacking of two-dimensional perovskites into heterostructures shows an increase in photoluminescence intensity by two orders of magnitude when compared to the individual two-dimensional perovskites.

About the Authors

D. R. Graupner
North Dakota State University
United States

Department of Chemistry and Biochemistry

Fargo, North Dakota



D. S. Kilin
North Dakota State University
United States

Department of Chemistry and Biochemistry

Fargo, North Dakota



References

1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett., 15, No. 6, 3692 (2015), doi: 10.1021/nl5048779.

2. B. R. Sutherland, E. H. Sargent, Nat. Photonics, 10, No. 5, 295 (2016), doi: 10.1038/nphoton.2016.62.

3. 3. X. Chen, H. Zhou, H. Wang, Front. Chem., 9 (2021), doi: 10.3389/fchem.2021.715157.

4. E.-B. Kim, M. S. Akhtar, H.-S. Shin, S. Ameen, M. K. Nazeeruddin, J. Photochem. Photobiol., C 48, 100405 (2021), doi: 10.1016/j.jphotochemrev.2021.100405.

5. C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun, L. Tang, J. Yang, W. Luo, C. Li, Y. Deng, S. Feng, J. Shen, S. Lu, C. Du, H. Shi, Nanoscale, 8, No. 43, 18309 (2016), doi: 10.1039/C6NR04741F.

6. F. Arabpour Roghabadi, M. Alidaei, S. M. Mousavi, T. Ashjari, A. S. Tehrani, V. Ahmadi, S. M. Sadrameli, J. Mater. Chem. A, 7, No. 11, 5898 (2019), doi:10.1039/C8TA10444A.

7. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci., 7, No. 3, 982 (2014), doi:10.1039/C3EE43822H.

8. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, S. G. Mhaisalkar, Adv. Mater., 28, No. 19, 3653 (2016), doi: 10.1002/adma.201506141.

9. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol., 9, No. 9, 687 (2014), doi: 10.1038/nnano.2014.149.

10. Y. Miao, L. Cheng, W. Zou, L. Gu, J. Zhang, Q. Guo, Q. Peng, M. Xu, Y. He, S. Zhang, Y. Cao, R. Li, N. Wang, W. Huang, J. Wang, Light: Sci. Appl., 9, No. 1, 89 (2020), doi: 10.1038/s41377-020-0328-6.

11. L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang, M. Yuan, Light: Sci. Appl., 10, No. 1, 61 (2021), doi: 10.1038/s41377-021-00501-0.

12. C. Zhao, D. Zhang, C. Qin, CCS Chem., 2, No. 4, 859 (2020), doi: 10.31635/ccschem.020.202000216.

13. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc., 140, No. 10, 3775 (2018), doi: 10.1021/jacs.8b00542.

14. M. Dion, M. Ganne, M. Tournoux, Mater. Res. Bull., 16, No. 11, 1429 (1981), doi: 10.1016/00255408(81)90063-5.

15. A. J. Jacobson, J. W. Johnson, J. T. Lewandowski, Inorg. Chem., 24, No. 23, 3727 (1985), doi: 10.1021/ic00217a006.

16. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, L. G. Kanatzidis, Chem. Mater., 28, No. 8, 2852 (2016), doi: 10.1021/acs.chemmater.6b00847.

17. K. R. Kendall, C. Navas, J. K. Thomas, H.-C. zur Loye, Chem. Mater., 8, No. 3, 642 (1996), doi: 10.1021/cm9503083.

18. C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A. D. Mohite, J. Even, T. J. Marks, M. G. Kanatzidis, J. Am. Chem. Soc., 139, No. 45, 16297 (2017), doi: 10.1021/jacs.7b09096.

19. K. Wang, J. Y. Park, Akriti, L. Dou, EcoMat, 3, No. 3, e12104 (2021), doi: 10.1002/eom2.12104.

20. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite, Nat. Commun., 9, No. 1, 2254 (2018), doi: 10.1038/s41467-018-04659-x.

21. L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, J. Am. Chem. Soc., 138, No. 8, 2649 (2016), doi: 10.1021/jacs.5b11740.

22. C. P. Clark, J. E. Mann, J. S. Bangsund, W.-J. Hsu, E. S. Aydil, R. J. Holmes, ACS Energy Lett., 5, No. 11, 3443 (2020), doi: 10.1021/acsenergylett.0c01609.

23. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 78, No. 7, 1396 (1997), doi: 10.1103/PhysRevLett.78.1396.

24. G. Kresse, D. Joubert, Phys. Rev. B, 59, No. 3, 1758 (1999), doi: 10.1103/PhysRevB.59.1758.

25. P. E. Blöchl, Phys. Rev. B, 50, No. 24, 17953 (1994), doi: 10.1103/PhysRevB.50.17953.

26. G. Kresse, J. Furthmüller, Comput. Mater. Sci., 6, No. 1, 15 (1996), doi: 10.1016/0927-0256(96)00008-0.

27. J. Kubler, K. H. Hock, J. Sticht, A. R. Williams, J. Phys. F: Met. Phys., 18, No. 3, 469 (1988), doi: 10.1088/0305-4608/18/3/018.

28. U. V. Barth, L. Hedin, J. Phys. C: Solid State Phys., 5, No. 13, 1629 (1972), doi: 10.1088/00223719/5/13/012.

29. A. G. Redfield, IBM J. Res. Dev. 1, No. 1, 19 (1957), doi: 10.1147/rd.11.0019.

30. J. M. Jean, R. A. Friesner, G. R. Fleming, J. Chem. Phys., 96, No. 8, 5827 (1992), doi: 10.1063/1.462858.

31. A. Einstein, Phys. Z., 18, 121 (1917).

32. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950), doi: 10.1039/DF9500900014.

33. Y. Fu, W. Zheng, X. Wang, M. P. Hautzinger, D. Pan, L. Dang, J. C. Wright, A. Pan, S. Jin, J. Am. Chem. Soc., 140, No. 46, 15675 (2018), doi: 10.1021/jacs.8b07843.


Review

For citations:


Graupner D.R., Kilin D.S. Effect of Stacking 2D Lead Chloride Perovskites into Vertical Heterostructures on Photoluminescence Intensity. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):348-1 - 348-10.

Views: 148


ISSN 0514-7506 (Print)