Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Computational Simulation, Multi-Spectroscopic and Degradation Analysis of the Interaction between Trametes versicolor Laccase and Bisphenol E

Abstract

Trametes versicolor laccase, one of the main enzymes used for the biodegradation of environmental pollutants, has received much attention in the degradation of phenolic pollutants. In this study, the binding energy between the Trametes versicolor laccase and bisphenol E (BPE) is first calculated by means of computational simulation. Moreover, the interaction between Trametes versicolor laccase and bisphenol E is studied with multi-spectroscopy. The results show that bisphenol E can be effectively degraded by crude Trametes versicolor laccase under optimal incubation conditions. The kinetic study is used to characterize the kinetic features of the laccase-catalytic degradation of BPE. The calculation results suggest that the reaction can proceed spontaneously. Spectral analyses show that the secondary structure oflaccaseis changed after the interaction between laccase and bisphenol E. The degradation efficiency of BPE is up to 93.64% after reacting for 6 h, and the maximum catalytic reaction rate is 0.1764 mg/(L·min). The reactions follow a first-order kinetic equation when the initial concentration of the substrate is lower than 5 mol/L.

About the Authors

Xiaolian Lin
Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials; College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



Hongyan Liu
Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials; College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



Minhua Xu
Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials; College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



Mengjie Shi
Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials; College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



Zhongsheng Yi
College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



Litang Qin
The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control
China

Guilin



Huiying Chen
College of Chemistry and Bioengineering, Guilin University of Technology
China

Guilin



References

1. V. W. Makene, E. J. Pool, Int. J. Environ. Res. Public. Health, 16 (2019).

2. A. E. Hipwell, L. G. Kahn, P. Factor-Litvak, C. A. Porucznik, E. L. Siegel, R. N. Fichorova, R. F. Hamman, M. Klein-Fedyshin, K. G. Harley, Human Rep. Update, 25, 51–71 (2019).

3. Q. Zhang, C. Ji, X. Yin, L. Yan, M. Lu, M. Zhao, Environ. Poll., 210, 27–33 (2016).

4. 4. G. H. Wang, F. Wu, Environ. Chem., 25, 458–461 (2006).

5. M. Y. Chen, M. Ike, M. Fujita, Environ. Toxic., 17, 80–86 (2002).

6. M. Xiao, J. Q. Xiao, Water Purif. Technol., 28, 21–24 (2009).

7. C. Y. Bao, Y. Wang, X. L. Xu, D. Li, J. Chen, Z. B. Guan, B. Y. Wang, M. Hong, J. Y. Zhang,

8. T. H. Wang, Q. Zhang, Bioresour. Technol., 342, 126026 (2021).

9. R. C. Minussi, G. M. Pastore, N. Duran, Bioresour. Technol., 98, 158–164 (2007).

10. C. Zhang, L. Liu, G.-M. Zeng, D.-L. Huang, C. Lai, C. Huang, Z. Wei, N.-J. Li, P. Xu, M. Cheng, F.-L. Li, X.-X. He, M.-Y. Lai, Y.-B. He, Biochem. Eng. J., 91, 149–156 (2014).

11. G. Benfield, S. M. Bocks, K. Bromley, B. R. Brown, Phytochemistry, 3, 79–88 (1964).

12. J. A. Majeau, S. K. Brar, R. D. Tyagi, Bioresour. Technol., 101, 2331–2350 (2010).

13. A. C. Mot, R. Silaghi-Dumitrescu, Biochemistry (Mos.), 77, 1395–1407 (2012).

14. L. Munk, A. K. Sitarz, D. C. Kalyani, J. D. Mikkelsen, A. S. Meyer, Biotechnol. Adv., 33, 13–24 (2015).

15. H. Catherine, M. Penninckx, D. Frédéric, Environ. Technol. Innovat., 5, 250–266 (2016).

16. G. Macellaro, C. Pezzella, P. Cicatiello, G. Sannia, A. Piscitelli, Biomed. Res. Int., 614038 (2014).

17. U. N. Dwivedi, P. Singh, V. P. Pandey, A. Kumar, J. Mol. Catal. B Enzym., 68, 117–128 (2011).

18. M. Asgher, A. Wahab, M. Bilal, H. M. N. Iqbal, Waste Biomass Valorization, 9, 2071–2079 (2017).

19. S.Beck,E.Berry,S.Duke,A.Milliken,H.Patterson,D.L.Prewett,T.C.Rae,V.Sridhar, N. Wendland, B. W. Gregory, C. M. Johnson, Int. Biodeterior. Biodegradation, 127, 146–159 (2018).

20. R. Bourbonnais, M. G. Paice, Appl. Microbiol. Biotech., 36, 823–827 (1992).

21. D. Daâssi, A. Prieto, H. Zouari-Mechichi, M. J. Martínez, M. Nasri, T. Mechichi, Int. Biodeterior. Biodegradation, 110, 181–188 (2016).

22. M. Maryskova, I. Ardao, C. A. Garcia-Gonzalez, L. Martinova, J. Rotkova, A. Sevcu, Enzyme Microbiol. Technol., 89, 31–38 (2016).

23. L. Hongyan, Z. Zexiong, X. Shiwei, X. He, Z. Yinian, L. Haiyun, Y. Zhongsheng, Chemosphere, 224, 743–750 (2019).

24. K. Piontek, M. Antorini, T. Choinowski, J. Biol. Chem., 277, 37663–37669 (2002).

25. X. Hou, J. Du, J. Zhang, L. Du, H. Fang, M. Li, J. Chem. Inf. Model., 53, 188–200 (2013).

26. A. P. Norgan, P. K. Coffman, J. P. A. Kocher, D. J. Katzmann, C. P. Sosa, J. Cheminformatics, 3, 12 (2011).

27. M. A. Murcko, J. Med. Chem., 38, No. 26, 4953–4967 (1995).

28. Y. M. Cao, L. Xu, L. Y. Jia, N. Biotechnol., 29, 90–98 (2011).

29. R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model., 51, 2778–2786 (2011).

30. Y. Wei, Z. Yi, J. Xu, W. Yang, L. Yang, H. Liu, J. Biomol. Struct. Dyn., 37, 1402–1413 (2019).

31. 30. J. Xu, Y. Wei, W. Yang, L. Yang, Z. Yi, Analyst, 143, 4662–4673 (2018).

32. D. Wu, D. Liu, Y. Zhang, Z. Zhang, H. Li, Eur. J. Med. Chem., 146, 245–250 (2018).

33. A. E. Illera, S. Beltran, M. T. Sanz, Sci. Rep., 9, 13749 (2019).

34. Y. M. Song, J. Wu, X. R. Zheng, Q. Wu, Chin. J. Inorg. Chem., 22, 1615–1622 (2006).

35. PrinciplesofFluorescenceSpectroscopy,Ed.R.L.Joseph,SpringerScience&BusinessMedia, 529–569 (2013).

36. I. P. Caruso, W. Vilegas, M. A. Fossey, M. L. Cornelio, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 449–455 (2012).

37. Z. A. Parray, F. Ahmad, M. I. Hassan, I. Hasan, A. Islam, ACS Omega, 5, 13840–13850 (2020).

38. B. Nian, C. Cao, Y. Liu, J. Chem. Technol. Biotech., 95, 86–93 (2019).

39. S. K. Pawar, S. Jaldappagari, J. Pharm. Anal., 9, 274–283 (2019).

40. S. K. Pawar, R. Punith, R. S. Naik, J. Seetharamappa, J. Biomol. Struct. Dyn., 35, 3205–3220 (2017).

41. T. A. Wani, A. H. Bakheit, M. A. Abounassif, S. Zargar, Front Chem., 6, 47 (2018).

42. S. Li, J. H. Zhang, X. Y. Li, J. Q. Fu, J. Beijing Institute Clothing Technol., 31, 68–72 (2011).

43. G. Konstantin, I. Aymelt, S. G. Roger, G. Klaus, K. Carsten, Biophys. Comp. Biol., 110, 13380–13385 (2013).

44. Y. G. Shi, Q. Q. Guo, X. W. Yang, X. F. Liu, S. J. Wang, J. Chin. Institute Food Sci. Tech., 18, 225–231 (2018).

45. H. Tang, D. Zhao, Bioorg. Chem., 88, 102981 (2019).

46. Y. J. Kim, J. A. Nicell, Bioresour. Technol., 97, 1431–1442 (2006).

47. I. Escalona, J. de Grooth, J. Font, K. Nijmeijer, J. Membrane Sci., 468, 192–201 (2014).

48. J. Margot, J. Maillard, L. Rossi, D. A. Barry, C. Holliger, New Biotech., 30, 803–813 (2013).


Review

For citations:


Lin X., Liu H., Xu M., Shi M., Yi Zh., Qin L., Chen H. Computational Simulation, Multi-Spectroscopic and Degradation Analysis of the Interaction between Trametes versicolor Laccase and Bisphenol E. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):352-1 - 352-10.

Views: 107


ISSN 0514-7506 (Print)