Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effect of Temperature on Visible Photoluminescence of Thermally Annealed PbSe Nanocrystalline Films

Abstract

The photoluminescence (PL) performance of thermally annealed PbSe nanocrystalline films has been investigated at different temperatures. The visible PL signals at 655 and 466 nm are observed for the asprepared PbSe films, and the enhanced intensities of the two PL peaks are closely related to the optimized crystallization quality of PbSe nanoparticles after annealing at 50–150°C. However, as the annealing temperature is above 200°C, the severe surface damage of PbSe films induced by the oxide impurity phases and dislocation defects results in the reduction of the crystallinity of PbSe and the lower intensities of PL signals, which have been proved by means of X-ray diffraction (XRD) characterization. In addition, another emission peak at 429 nm is observed at the annealing temperature above 200°C owing to the appearance of the PbO impurity phase, and its intensity strongly depends on the content of the PbO impurity phase, whereas the PL intensity decreases above 350°C owing to the formation of PbSeOx.

About the Authors

Wei Wu
University of Electronic Science and Technology of China
China

School of Physics

Chengdu



Bo Li
University of Electronic Science and Technology of China
China

School of Physics

Chengdu



Xia Xiang
University of Electronic Science and Technology of China
China

School of Physics

Chengdu



Xiaotao Zu
University of Electronic Science and Technology of China
China

School of Physics

Chengdu



References

1. A. Namekawa, R. Katoh, Chem. Phys. Lett., 659, 154–158 (2016).

2. V. Arivazhagan, M. M. Parvathi, S. Rajesh, Vacuum, 99, 95–98 (2014).

3. L. Zhang, Y. Zhang, S. V. Kershaw, et al., Nanotechnology, 25, 105704 (2014).

4. T. Tohidi, K. Jamshidi-Ghaleh, Appl. Phys. A, 118, 1247–1258 (2015).

5. J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Science, 321, 554–557 (2008).

6. H. Zogg, S. Blunier, T. Hoshino, et al., IEEE Trans Electron Devices, 38, 1110–1117 (1991).

7. 7. F. W. Wise, Acc. Chem. Res., 33, 773–780 (2000).

8. W. L. Ma, J. M. Luther, H. M. Zheng, et al., Nano Lett., 9, 1699–1703 (2009).

9. Y. Liu, M. Gibbs, J. Puthussery, et al., Nano Lett., 10, 1960–1969 (2010).

10. W. R. Feng, X. Y. Wang, H. Zhou, et al., Vacuum, 109, 108–111 (2014).

11. F. G. Hone, F. B. Dejene, J. Mater. Sci. Mater. Electron., 28, 5979–5989 (2017).

12. M. Bouroushian, Z. Loizos, N. Spyrellis, et al., Thin Solid Films, 229, 101–106 (1993).

13. L. M. Peter, R. L. Wang, Electrochem. Commun., 1, 554–558 (1999).

14. S. P. Zimin, I. I. Amirov, V. V. Naumov, Semiconductors, 50, 1125–1129 (2016).

15. R. P. Sugavaneshwar, T. D. Dao, T. Yokoyama, et al., Radiation Effects and Defects in Solids, 173, 112–117 (2018).

16. L. P. Biro, R. M. Candea, G. Borodi, et al., Thin Solid Films, 165, 303–315 (1988).

17. M. C. Torquemada, M. T. Rodrigo, G. Vergara, et al., J. Appl. Phys., 93, 1778–1784 (2003).

18. V. Kasiyan, Z. Dashevsky, C. M. Schwarz, et al., J. Appl. Phys., 112, 086101 (2012).

19. P. Kumar, M. Pfeffer, E. Schweda, et al., J. Alloys Compd., 724, 316–326 (2017).

20. S. Ganguly, S. Yoo, J. Electron. Mater., 48, 6169–6175 (2019).

21. L. N. Maskaeva, V. M. Yurk, V. F. Markov, et al., Semiconductors, 54, 1191–1197 (2020).

22. S. Y. Yan, Q. Yang, S. L. Feng, et al., J. Electron. Mater., 49, 4929–4935 (2020).

23. P. Kumar, M. Pfeffer, C. Berthold, et al., J. Alloys Compd., 735, 1654–1661 (2018).

24. F. Zhao, S. Mukherjee, J. Ma, et al., Appl. Phys. Lett., 92, 211110 (2008).

25. D. W. Ma, C. Cheng, Y. N. Zhang, et al., Opt. Mater., 37, 834–839 (2014).

26. W. Wu, Y. L. Tang, B. Li, et al., Opt. Mater., 118, 111233 (2021).

27. W. E. Mahmoud, Polym. Adv. Technol., 22, 2550–2555 (2011).

28. M. R. A. Bhuiyan, M. A. A. Azad, S. M. F. Hasan, Indian J. Pure. Appl. Phys., 49, 180–185 (2011).

29. G. K. Williamson, R. E. Smallman, Philos. Mag., 1, 34–46 (1956).

30. J. I. Langford, A. J. C. Wilson, J. Appl. Cryst., 11, 102–113 (1978).

31. T. H. Gfroerer, In: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2006), https://doi.org/10.1002/9780470027318.a2510

32. N. Mythili, K. T. Arulmozhi, Int. J. Sci. Eng. Res., 5, 412–416 (2014).

33. R. Yousefi, A. K. Zak, F. Jamali-Sheini, et al., Ceram. Int., 40, 11699–11703 (2014).

34. C. Gautier, M. Cambon-Muller, M. Averous, Appl. Surf. Sci., 141, 157–163 (1999).

35. C. Cai, S. B. Han, X. T. Zhang, et al., RSC Adv., 12, 6205–6213 (2022).

36. X. G. Sun, K. W. Gao, X. L. Pang, et al., Appl. Surf. Sci., 356, 978–985 (2015).

37. V. V. Tomaev, L. L. Makarov, P. A. Tikhonov, et al., Glass Phys. Chem., 30, 349–355 (2004).


Review

For citations:


Wu W., Li B., Xiang X., Zu X. Effect of Temperature on Visible Photoluminescence of Thermally Annealed PbSe Nanocrystalline Films. Zhurnal Prikladnoii Spektroskopii. 2023;90(2):350-1 - 350-7.

Views: 142


ISSN 0514-7506 (Print)