Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Different Hybrid Prediction’s Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy

Abstract

Laser-induced breakdown spectroscopy (LIBS) technique is employed for quantitative analysis of aluminum samples by different classical machine learning approaches. A Q-switch Nd:YAG laser at a fundamental harmonic of 1064 nm is utilized for the creation of LIBS plasma in order to predict constituent concentrations of the aluminum standard alloys. In the current research, concentration prediction is performed by linear approaches of support vector regression (SVR), multiple linear regression (MLR), principal component analysis (PCA) integrated with MLR (PCA-MLR), and SVR (PCA-SVR), as well as nonlinear algorithms of artificial neural network (ANN), kernelized support vector regression (KSVR), and the integration of traditional principal component analysis with KSVR (PCA-KSVR), and ANN (PCA-ANN). Furthermore, dimension reduction is applied to various methodologies by the PCA algorithm in order to improve the quantitative analysis. The results indicated that the combination of PCA with the KSVR algorithm model had the best efficiency in predicting most of the elements among other classical machine learning algorithms.

About the Authors

M. Rezaei
Department of Industrial Engineering, University of Science and Technology of Mazandaran
Islamic Republic of Iran

Mohsen Rezaei.

Behshahr



F. Rezaei
Department of Physics, K.N. Toosi University of Technology
Islamic Republic of Iran

Fatemeh Rezaei.

Tehran



P. Karimi
Department of Physics, South Tehran Branch, Islamic Azad University
Islamic Republic of Iran

Parvin Karimi.

Tehran



References

1. F. Rezaei, G. Cristoforetti, E. Tognoni, S. Legnaioli, V. Palleschi, A. Safi, Spectrochim. Acta B: At. Spec- trosc., 169, 105878 (2020).

2. F. Rezaei, S. H. Tavassoli, Phys. Plasmas, 20, 013301 (2013).

3. S. Messaoud Aberkane, A. Safi, A. Botto, B. Campanella, S. Legnaioli, F. Poggialini, S. Raneri, F. Rezaei, V. Palleschi, Appl. Sci., 10, 4973 (2020).

4. F. Rezaei, Appl. Opt., 59, 3002 (2020).

5. F. Rezaei, P. Karimi, S. Tavassoli, Appl. Phys. B, 114, 591 (2014).

6. Y .Yang, C. Li, S. Liu, H. Min, C. Yan, M. Yang, J. Yu, Anal. Methods, 10 (2020).

7. M. Boueri, V. Motto-Ros, W.-Q. Lei, L.-J. Zheng, H.-P. Zeng, Appl. Spectrosc., 65, 307 (2011).

8. T. A. Labutin, A. M. Popov, S. N. Raikov, S. M. Zaytsev, N. A. Labutina, N. B. Zorov, J. Appl. Spectrosc., 80, 315-318 (2013)

9. D. Luarte, A. K. Myakalwar, M. Velasquez, J. Alvarez, C. Sandoval, R. Fuentes, J. Yanez, D. Sbarbaro, Anal. Methods, 9 (2021)

10. G. S. Senesi, R. A. Romano, B. S. Marangoni, G. Nicolodelli, P. R. Villas-Boas, V. M. Benites, D. M. B. P. Milori, J. Appl. Spectrosc., 84, 923-928 (2017).

11. F. F. Hilario, M. L. de Mello, E. R. Pereira-Filho, Anal. Methods, 2 (2021).

12. S. Chatterjee, M. Singh, B. Biswal, U. K. Sinha, S. Patbhaje, A. Sarkar, Anal. Bioanal. Chem. 9, 411 (2019).

13. Q. Q. Wang, L.A. He, Y. Zhao, Z. Peng, L. Liu, Laser. Phys., 26, 065605 (2016).

14. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, S. M. Clegg, Spectrochim. Acta B: At. Spectrosc., 107, 1 (2015).

15. J. Huang, M. Dong, S. Lu, W. Li, J. Lu, C. Liu, J.H. Yoo, J. Anal. At. Spectrom., 33, 720 (2018).

16. S. Laville, M. Sabsabi, F. R. Doucet, Spectrochim. Acta B: At. Spectrosc., 62, 1557 (2007).

17. J. Wang, S. Xue, P. Zheng, Y. Chen, R. Peng, Anal. Lett., 2017, 50 (2000).

18. K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, L. T. Smith, Anal. Bioanal. Chem., 400, 3315 (2011).

19. V. K. Unnikrishnan, K. S. Choudhari, Suresh D. Kulkarni, R. Nayak, V. B. Kartha, C. Santhosh, RSC Adv., 3, 25872-25880 (2013).

20. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, L. Martin-Neto, Spectrochim. Acta B: At. Spectrosc., 63, 1216-1220 (2008).

21. M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, J. H. Yoo, J. Anal. At. Spectrom., 34, 480-488 (2019).

22. A. Safi, S. H. Tavassoli, G. Cristoforetti, S. Legnaioli, V. Palleschi, F. Rezaei, E. Tognoni, J. Adv. Res., 18, 1 (2019).

23. H. Nozari, F. Rezaei, S. H. Tavassoli, Phys. Plasmas, 22, 093302 (2015).

24. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. Lepore, Spectrochim. Acta B: At. Spectrosc., 107, 1-10 (2015).

25. A. J. Smola, B. Scholkopf, Statist. Comput., 14, 199 (2004).

26. S. Thomas, G. N. Pillai, K. Pal, Geomat. Nat. Hazards Risk, 8, 177 (2017).

27. S. Shokri, M. T. Sadeghi, M. A. Marvast, S. Narasimhan, Chem. Ind. Chem. Eng. Q, 21, 379 (2015).

28. X. Ma, Y. Zhang, H. Cao, S. Zhang, Y. Zhou, J. Spectrosc. (2018).

29. M. Rezaei, S. Chaharsooghi, A. Kashan, R. Babazadeh, Int. J. Environ. Sci. Technol, 17, 3241 (2020).

30. A. Pouliakis, E. Karakitsou, N. Margari, P. Bountris, M. Haritou, J. Panayiotides, D. Koutsouris, P. Karakitsos, Biomed. Eng. Comput. Biol., 7 (2016).

31. A. Nikkhah, A. Rohani, K. A. Rosentrater, M. El Haj Assad, S. Ghnimi, Environ. Prog. Sustain, 38, 13130 (2019).

32. E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, E. J. Ferreira, J. M. Anzano, Spectrochim. Acta B: At. Spectrosc., 110, 96 (2015).

33. H. Qin, Z. Lu, S. Yao, Z. Liab, J. Lu, JAAS, 34, 347 (2019).

34. E. D'Andrea, S. Pagnotta, E. Grifoni, G. Lorenzetti, S. Legnaioli, V. Palleschi, B. Lazzerini, Spectrochim. Acta B: At. Spectrosc., 99, 52 (2014).

35. J. P. Castro, D. V. Babos, E. R. Pereira-Filho, Talanta, 208, 120443 (2020).

36. J. Zhang, R. Li, X. Zhang, Y. Bai, P. Cao, P. Hua, Sci. Total Environ., 649, 1314 (2019).

37. X. Jin, Y. Zhang, D. Yao, Int. Symposium on Neural Networks, 1022-1031 (2007).

38. X. Cui, Q. Wang, Y. Zhao, X. Qiao, G. Teng, Appl. Phys. B, 125, 56 (2019).

39. S. Chutani, A. Goyal, Multimed Tools Appl., 77, 7447 (2018).

40. R. Noori, A. Karbassi, M. S. Sabahi, J. Environ. Manage, 91, 767 (2010).

41. B. G. Alhassan, F. B. Yusof, S. M. Norrulashikin, IJMH, 4, 40-48 (2020).

42. V. Singh, I. Gupta, H. Gupta, Eng. Appl. Artific. Intell., 20, 249 (2007).

43. S. K. Chaharsooghi, M. Rezaei, Int. J. Serv. Oper. Manag., 25, 120 (2016).

44. M. Dorofki, A. H. Elshafie, O. Jaafar, O. A. Karim, S. Mastura, Int. Proc. Chem. Biol. Environ, 33, 39 (2012).

45. M. A. Shafi, N. Hamzah, 4th Int. Power Engineering and Optimization Conference, 352 (2010).

46. F. Rezaei, Plasma Science and Technology: Progress in Physical States and Chemical Reactions, 363 (2016).

47. W. Zhang, S.-Y. Tang, Y.-F. Zhu, W.-P. Wang, World Acad. Sci. Eng. Technol., 41, 933 (2010).

48. D. Z. Antanasijevic, M. D. Ristic, A. A. Peric-Grujic, V. V. Pocajt, Int. J. Green. Gas Control, 20, 244 (2014).

49. I. Babaoglu, O. Findik, M. Bayrak, Expert Syst. Appl., 37, 2182 (2010).

50. V. M. Janakiraman, X. Nguyen, D. Assanis, Appl. Soft Comput., 13, 2375 (2013).


Review

For citations:


Rezaei M., Rezaei F., Karimi P. Different Hybrid Prediction’s Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):528-1-528-12.

Views: 190


ISSN 0514-7506 (Print)