Different Hybrid Prediction’s Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy
Abstract
Laser-induced breakdown spectroscopy (LIBS) technique is employed for quantitative analysis of aluminum samples by different classical machine learning approaches. A Q-switch Nd:YAG laser at a fundamental harmonic of 1064 nm is utilized for the creation of LIBS plasma in order to predict constituent concentrations of the aluminum standard alloys. In the current research, concentration prediction is performed by linear approaches of support vector regression (SVR), multiple linear regression (MLR), principal component analysis (PCA) integrated with MLR (PCA-MLR), and SVR (PCA-SVR), as well as nonlinear algorithms of artificial neural network (ANN), kernelized support vector regression (KSVR), and the integration of traditional principal component analysis with KSVR (PCA-KSVR), and ANN (PCA-ANN). Furthermore, dimension reduction is applied to various methodologies by the PCA algorithm in order to improve the quantitative analysis. The results indicated that the combination of PCA with the KSVR algorithm model had the best efficiency in predicting most of the elements among other classical machine learning algorithms.
Keywords
About the Authors
M. RezaeiIslamic Republic of Iran
Mohsen Rezaei.
Behshahr
F. Rezaei
Islamic Republic of Iran
Fatemeh Rezaei.
Tehran
P. Karimi
Islamic Republic of Iran
Parvin Karimi.
Tehran
References
1. F. Rezaei, G. Cristoforetti, E. Tognoni, S. Legnaioli, V. Palleschi, A. Safi, Spectrochim. Acta B: At. Spec- trosc., 169, 105878 (2020).
2. F. Rezaei, S. H. Tavassoli, Phys. Plasmas, 20, 013301 (2013).
3. S. Messaoud Aberkane, A. Safi, A. Botto, B. Campanella, S. Legnaioli, F. Poggialini, S. Raneri, F. Rezaei, V. Palleschi, Appl. Sci., 10, 4973 (2020).
4. F. Rezaei, Appl. Opt., 59, 3002 (2020).
5. F. Rezaei, P. Karimi, S. Tavassoli, Appl. Phys. B, 114, 591 (2014).
6. Y .Yang, C. Li, S. Liu, H. Min, C. Yan, M. Yang, J. Yu, Anal. Methods, 10 (2020).
7. M. Boueri, V. Motto-Ros, W.-Q. Lei, L.-J. Zheng, H.-P. Zeng, Appl. Spectrosc., 65, 307 (2011).
8. T. A. Labutin, A. M. Popov, S. N. Raikov, S. M. Zaytsev, N. A. Labutina, N. B. Zorov, J. Appl. Spectrosc., 80, 315-318 (2013)
9. D. Luarte, A. K. Myakalwar, M. Velasquez, J. Alvarez, C. Sandoval, R. Fuentes, J. Yanez, D. Sbarbaro, Anal. Methods, 9 (2021)
10. G. S. Senesi, R. A. Romano, B. S. Marangoni, G. Nicolodelli, P. R. Villas-Boas, V. M. Benites, D. M. B. P. Milori, J. Appl. Spectrosc., 84, 923-928 (2017).
11. F. F. Hilario, M. L. de Mello, E. R. Pereira-Filho, Anal. Methods, 2 (2021).
12. S. Chatterjee, M. Singh, B. Biswal, U. K. Sinha, S. Patbhaje, A. Sarkar, Anal. Bioanal. Chem. 9, 411 (2019).
13. Q. Q. Wang, L.A. He, Y. Zhao, Z. Peng, L. Liu, Laser. Phys., 26, 065605 (2016).
14. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, S. M. Clegg, Spectrochim. Acta B: At. Spectrosc., 107, 1 (2015).
15. J. Huang, M. Dong, S. Lu, W. Li, J. Lu, C. Liu, J.H. Yoo, J. Anal. At. Spectrom., 33, 720 (2018).
16. S. Laville, M. Sabsabi, F. R. Doucet, Spectrochim. Acta B: At. Spectrosc., 62, 1557 (2007).
17. J. Wang, S. Xue, P. Zheng, Y. Chen, R. Peng, Anal. Lett., 2017, 50 (2000).
18. K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, L. T. Smith, Anal. Bioanal. Chem., 400, 3315 (2011).
19. V. K. Unnikrishnan, K. S. Choudhari, Suresh D. Kulkarni, R. Nayak, V. B. Kartha, C. Santhosh, RSC Adv., 3, 25872-25880 (2013).
20. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, L. Martin-Neto, Spectrochim. Acta B: At. Spectrosc., 63, 1216-1220 (2008).
21. M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, J. H. Yoo, J. Anal. At. Spectrom., 34, 480-488 (2019).
22. A. Safi, S. H. Tavassoli, G. Cristoforetti, S. Legnaioli, V. Palleschi, F. Rezaei, E. Tognoni, J. Adv. Res., 18, 1 (2019).
23. H. Nozari, F. Rezaei, S. H. Tavassoli, Phys. Plasmas, 22, 093302 (2015).
24. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan, E. A. Breves, K. Lepore, Spectrochim. Acta B: At. Spectrosc., 107, 1-10 (2015).
25. A. J. Smola, B. Scholkopf, Statist. Comput., 14, 199 (2004).
26. S. Thomas, G. N. Pillai, K. Pal, Geomat. Nat. Hazards Risk, 8, 177 (2017).
27. S. Shokri, M. T. Sadeghi, M. A. Marvast, S. Narasimhan, Chem. Ind. Chem. Eng. Q, 21, 379 (2015).
28. X. Ma, Y. Zhang, H. Cao, S. Zhang, Y. Zhou, J. Spectrosc. (2018).
29. M. Rezaei, S. Chaharsooghi, A. Kashan, R. Babazadeh, Int. J. Environ. Sci. Technol, 17, 3241 (2020).
30. A. Pouliakis, E. Karakitsou, N. Margari, P. Bountris, M. Haritou, J. Panayiotides, D. Koutsouris, P. Karakitsos, Biomed. Eng. Comput. Biol., 7 (2016).
31. A. Nikkhah, A. Rohani, K. A. Rosentrater, M. El Haj Assad, S. Ghnimi, Environ. Prog. Sustain, 38, 13130 (2019).
32. E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, E. J. Ferreira, J. M. Anzano, Spectrochim. Acta B: At. Spectrosc., 110, 96 (2015).
33. H. Qin, Z. Lu, S. Yao, Z. Liab, J. Lu, JAAS, 34, 347 (2019).
34. E. D'Andrea, S. Pagnotta, E. Grifoni, G. Lorenzetti, S. Legnaioli, V. Palleschi, B. Lazzerini, Spectrochim. Acta B: At. Spectrosc., 99, 52 (2014).
35. J. P. Castro, D. V. Babos, E. R. Pereira-Filho, Talanta, 208, 120443 (2020).
36. J. Zhang, R. Li, X. Zhang, Y. Bai, P. Cao, P. Hua, Sci. Total Environ., 649, 1314 (2019).
37. X. Jin, Y. Zhang, D. Yao, Int. Symposium on Neural Networks, 1022-1031 (2007).
38. X. Cui, Q. Wang, Y. Zhao, X. Qiao, G. Teng, Appl. Phys. B, 125, 56 (2019).
39. S. Chutani, A. Goyal, Multimed Tools Appl., 77, 7447 (2018).
40. R. Noori, A. Karbassi, M. S. Sabahi, J. Environ. Manage, 91, 767 (2010).
41. B. G. Alhassan, F. B. Yusof, S. M. Norrulashikin, IJMH, 4, 40-48 (2020).
42. V. Singh, I. Gupta, H. Gupta, Eng. Appl. Artific. Intell., 20, 249 (2007).
43. S. K. Chaharsooghi, M. Rezaei, Int. J. Serv. Oper. Manag., 25, 120 (2016).
44. M. Dorofki, A. H. Elshafie, O. Jaafar, O. A. Karim, S. Mastura, Int. Proc. Chem. Biol. Environ, 33, 39 (2012).
45. M. A. Shafi, N. Hamzah, 4th Int. Power Engineering and Optimization Conference, 352 (2010).
46. F. Rezaei, Plasma Science and Technology: Progress in Physical States and Chemical Reactions, 363 (2016).
47. W. Zhang, S.-Y. Tang, Y.-F. Zhu, W.-P. Wang, World Acad. Sci. Eng. Technol., 41, 933 (2010).
48. D. Z. Antanasijevic, M. D. Ristic, A. A. Peric-Grujic, V. V. Pocajt, Int. J. Green. Gas Control, 20, 244 (2014).
49. I. Babaoglu, O. Findik, M. Bayrak, Expert Syst. Appl., 37, 2182 (2010).
50. V. M. Janakiraman, X. Nguyen, D. Assanis, Appl. Soft Comput., 13, 2375 (2013).
Review
For citations:
Rezaei M., Rezaei F., Karimi P. Different Hybrid Prediction’s Machine Learning Algorithms for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):528-1-528-12.