Longitudinal Distribution of the Maximal Intensity in Bessel Light Beams of Zero and Higher Orders
Abstract
A comparison of the longitudinal distributions of the maximal intensity in Bessel light beams (BLB) of different orders with analogical distributions in Gaussian and Laguerre-Gaussian light beams of the corresponding orders is made. The concept of the “dangerous zone” of the BLB is introduced and the method for determining its length is proposed. The maximum value of the intensity I0 of the initial Gaussian or Laguerre-Gaussian light beam is initially chosen not to exceed the optical damage threshold of the optical elements and objects used. The “dangerous zone” of the BLB is a region of space behind the axicon, in which the maximum intensity value in the BLB exceeds I0. The length of the “dangerous zone” is taken to be the largest distance zK behind the axicon, for which the maximum intensity in the cross section of the BLB is equal to I0. Additionally, the distance zE from the axicon is determined, at which the intensity values on the BLB's axis and in its peripheral annular field are aligned. In this cross section the maximum intensity values in the BLB of the 0th, 1st, and 2nd orders are guaranteed to be less than I0, but the transverse size of the light beam is not yet too large. With the help of mathematical modeling methods the relative (in units of the BLB's existence length zwI) values zE and zK for the zero and higher (from the first to the ninth) orders of the BLB are calculated. It is shown that when designing optical systems using the conical geometry of the BLB, it is advisable to place objects with low optical damage threshold at distances greater than zK, and the most energy efficient for the same given radius of the initial Laguerre-Gaussian beam in terms of the level I0/e2 is the 1st order BLB in the region from zK to zE.
About the Authors
I. V. BalykinBelarus
Minsk
A. A. Ryzhevich
Belarus
Minsk
N. S. Kazak
Belarus
Minsk
References
1. J. Durnin. J. Opt. Soc. Am. A, 4, N 4 (1987) 651—654
2. F. Gori, G. Guattari, C. Padovani. Opt. Comm., 64, N 6 (1987) 491—494
3. C. Paterson, R. Smith. Opt. Comm., 124 (1996) 121—130
4. H. S. Lee, B. W. Steward, K. Choi, H. Fenichel. Phys. Rev. A, 49, N 6 (1994) 4922—4927
5. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth. Adv. Comp. Math., 5 (1996) 329—359
6. R. Stoian, G. Zhang, R. Meyer, F. Courvoisier. Adv. Opt. Technol., 7, N 3 (2018) 165—174
7. M. K. Bhuyan, O. Jedrkiewicz, V. Sabonis, M. Mikutis, S. Recchia, A. Aprea, M. Bollani, P. Di Trapani. Appl. Phys. A, 120, N 2 (2015) 443—446
8. M. Duocastella, C. B. Arnold. Laser & Photon. Rev., 6, N 5 (2012) 607—621
9. J. Arlt, V. Garcez-Chavez, W. Sibbett, K. Dholakia. Opt. Comm., 197, N 4-6 (2001) 239—245
10. G. S. Sokolovskii, S. N. Losev, K. K. Soboleva, V. V. Dudelev, A. G. Deryagin, W. Sibbett, V. I. Kuchinskii, E. U. Rafailov. Tech. Phys. Lett., 40, N 6 (2014) 475—478
11. D. McGloin, V. Garces-Chavez, K. Dholakia. Opt. Lett., 28, N 8 (2003) 657—659
12. Н. А. Хило, П. И. Ропот, П. К. Петров, В. Н. Белый. Весці НАН Беларусі. Сер. фіз.-мат. навук, 58, № 1 (2022) 90—100
13. П. А. Апанасевич, Р. В. Чулков, А. С. Грабчиков, В. А. Орлович, Г. И. Тимофеева. Квант. электрон., 39, № 7 (2009) 615—623
14. А. А. Рыжевич, С. В. Солоневич, Н. А. Хило, И. В. Балыкин. Весці НАН Беларусі. Сер. фіз.- мат. навук, № 1 (2016) 107—116
15. Н. А. Хило, П. И. Ропот, В. Н. Белый, Н. С. Казак, А. Г. Мащенко. Неразрушающий контроль и диагностика, № 1, спецвып. 1 (2015) 39—60
16. А. А. Рыжевич, С. В. Солоневич, В. Е. Лепарский, А. Г. Смирнов. Неразрушающий контроль и диагностика, № 2, спецвып. 2 (2015) 34—66
Review
For citations:
Balykin I.V., Ryzhevich A.A., Kazak N.S. Longitudinal Distribution of the Maximal Intensity in Bessel Light Beams of Zero and Higher Orders. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):462-474. (In Russ.)