Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Investigation of Plasma Parameters and Electrical Characteristics of a Barrier Discharge During Plasma Treatment of Granular Materials

Abstract

The effect of the properties of granular materials (catalyst ZnO, sea salt NaCl) and plant seeds during their treatment in plasma of dielectric barrier discharge (DBD) on the combustion mode and discharge power was investigated. Optical emission spectroscopy methods were used to investigate the discharge spatial structure. Electron, vibrational, and rotational temperatures of plasma averaged over the cross section of the discharge gap were determined from the analysis of intensity distribution in rotationally unresolved spectral bands of (2+) N2 and (1-) N2+. It was observed a transition from the DBD filamentary mode to the combination of filamentary and surface discharges when the treated materials were presented in the discharge that was accompanied by an increase in the power dissipated in the discharge and the vibrational temperature in the near-electrode region in the vicinity of the material.

About the Authors

V. A. Lyushkevich
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



S. V. Goncharik
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. V. Parashchuk
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



I. I. Filatova
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. C. Z. Liu, N. Y. Cui, N. M. Brown. Surface and Coating Technol., 185 (2004) 311e320

2. H.-E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, J. F. Behnke. Vacuum, 71, N 3 (2003) 417—436

3. M. M. M. Bilek, M. Vandrovcova, A. Shelemin, A. Kuzminova, O. Kylian, H. Biederman, L. Bacakova, A. S. Weiss. Appl. Surface Sci., 518 (2020) 146128

4. K. Zdunek. Surface and Coatings Technol., 201 (2007) 4813—4816

5. Y.-R. Zhang, K. Van Laer, E. C. Neyts, A. Bogaerts. Appl. Catal. B: Environ., 185 (2016) 56—67

6. M. Ansari, M. Sharifian, M. H. Ehrampoush, A. H. Mahvi, M. H. Salmani, H. Fallahzadeh. Chem-osphere, 263 (2021) 128065

7. J. Li, C. Ma, S. Zhu, F.Yu, B. Dai, D. Yang. Nanomaterials, 9, N 3-4 (2019) 11428—11462

8. K. Ollegott, P. Wirth, C. Oberste-Beulmann, P. Awakowic, M. Muhler. Chem. Ing. Tech., 92, N 10 (2020) 1542—1558

9. S. H. Liu, M. Neiger. J. Phys. D: Appl. Phys., 34 (2001) 1632—1638

10. E. Wagenaars, R. Brandenburg, W. J. M. Brok, M. D. Bowden, H.-E. Wagner. J. Phys. D: Appl. Phys., 39, N 4 (2006) 700—711

11. I. H. Bang, E. S. Lee, H. S. Lee, S. C. Min. Postharvest Biol. Technol., 162 (2020) 111102

12. K. Puprasit, D. Wongsawaeng, K. Ngaosuwan, W. Kiatkittipong, S. Assabumrungrat. Innovative Food Sci. Emerging Technol., 66 (2020) 102511

13. N. Wannicke, R. Wagner, J. Stachowiak, T. M. C. Nishime, J. Ehlbeck, K. Weltmann, H. Brust. Plasma Process Polym., 18 (2021) e2000207

14. S. Chaple, C. Sarangapani, J. Jones, E. Carey, L. Causeret, A. Genson, B. Duffy, P. Bourke. Innovative Food Sci. Emerging Technol., 66 (2020) 102529

15. Y. Lee, Y. Y. Lee, Y. S. Kim, K. Balaraju, Y. S. Mok, S. J.Yoo, Y. Jeon. J. Ginseng Res., 45, N 4 (2021) 519—526

16. V. Sirgedaite-Seziene, V. Mildaziene, P. Zemaitis, A. Ivankov, K. Koga, M. Shiratani, V. Baliuckas. Plasma Process Polym., 18 (2020) e2000159

17. M. Kuchenbecker, N. Bibinov, A. Kaemlimg, D. Wandke, P. Awakowicz, W. Viol. J. Phys. D: Appl. Phys., 42 (2009) 045212

18. T. Tanino, M. Matsui, K. Uehara, T. Ohshima. Food Control, 109 (2020) 106890

19. C. Zhang, T. Shao, K. Long, Y. Yu, J. Wang, D. Zhang, P. Yan, Y. Zhou. IEEE Transact. Plasma Sci., 38, N 6 (2010) 1517—1526

20. M. Govaert, C. Smet, L. Vergauwen, B. Ecimovic, J. L. Walsh, M. Baka, J. V. Impe. Innovative Food Sci. Emerging Technol., 52 (2019) 376—386

21. A. Ozkan, T. Dufour, A. Bogaerts, F Reniers. Plasma Sources Sci. Technol., 25, N 4 (2016) 045016

22. T. Butterworth, R. W. K. Allen. Plasma Sources Sci. Technol., 26 (2017) 065008

23. K. Van Laer, A. Bogaerts. Energy Technol., 3 (2015) 1038—1044

24. H. Luo, K. Liu, J. Ran, Y. Yue, X. Wang, S. Yap, C. S. Wong. IEEE Transact. Plasma Sci., 42, N 5 (2014) 1211—1215

25. Е. В. Барабанова, К. М. Заборовский, Е. М. Посадова, Р. А. Кастро. Изв. Рос. гос. пед. ун-та им. А. И. Герцена, 157 (2013) 79—83

26. S. K. P. Veerapandian, C. Leys, N. De Geyter, R. Morent. Catalysts, 7 (2017) 113

27. A. Bogaerts, Q. Zhang, Y. Zhang, K. V. Laer, W. Wang. Catalysis Today, 337 (2019) 3—14

28. K. Takaki, J.-S. Chang, K. G. Kostov. IEEE Trans. Dielectr. Electr. Insul., 11, N 3 (2004) 281—290

29. F. Judee, T. Dufour. J. Appl. Phys., 128 (2020) 044901

30. N. A. Savastenko, I. I. Filatova, V. A. Lyushkevich, N. I. Chubrik, S. V. Goncharik, S. A. Maskevich. High Temp. Mater. Proc., 21, N 2 (2017) 127—142

31. I. I. Filatova, V. A. Lyushkevich, S. V. Goncharik, N. I. Chubrik, A. G. Zhukovsky, N. A. Krupenko, N. G. Poplavskaya, Najeeb-ur-Rehman. IX Int. Conf. Plasma Physics and Plasma Technology (PPPT-9), September 17—21, 2018, Minsk, Kovcheg (2018) 437—440

32. Д. А. Сорокин, М. И. Ломаев, Т. И. Банокина, В. Ф. Тарасенко. ЖТФ, 84, № 8 (2014) 13—20

33. N. Britun, M. Gaillard, A. Ricard, Y. M. Kim, J. G. Han. J. Phys. D: Appl. Phys., 40, N 4 (2007) 1022—1029

34. http://www.specair-radiation.net

35. V. V. Azharonok, I. I. Filatova, V. D. Shimanovich, L. N. Orlov. J. Appl. Spectr., 68 (2001) 831—837

36. F. J. J. Peeters, T. Butterworth. Atmospheric Pressure Plasma - From Diagnostics to Applications. In Tech. Open. (2019) 144

37. J. Kriegseis, B. Moller, S. Grundmann, C. Trope. J. Electrostatics, 69, N 4 (2011) 302—312

38. D. Mei, X. Zhu, Y. He, J. D. Yan, X. Tu. Plasma Sources Sci. Technol., 24, N 1 (2015) 015011

39. X. Tu, H.J. Gallon, J. C. Whitehead. J. Phys. D: Appl. Phys., 44 (2011) 482003

40. Z. Ye, S. K. P. Veerapandian, I. Onyshchenko, A. Nikiforov, N. De Geyter, J. Giraudon, J. Lamonier, R. Morent. Ind. Eng. Chem. Res., 56, N 37 (2017) 10215—10226

41. J. Cecha, P. Stahel, Z. Navratil. Eur. Phys. J. D, 54 (2009) 259—264

42. N. Jidenko, E. Bourgeois, J.-P. Borra. J. Phys. D: Appl. Phys., 43 (2010) 295203

43. J. Li, S. Zhu, K. Lu, C. Ma, D. Yang, F. Yu. J. Environ. Chem. Eng., 9, N 1 (2020) 104654

44. K. Takaki, Y. Hatanaka, K. Arima, S. Mukaigawa, T. Fujiwara. Vacuum, 83 (2009) 128—132

45. Р. А. Булгаков, Н. Н. Барышева. Ползуновский альманах, № 4 (2018) 205—207


Review

For citations:


Lyushkevich V.A., Goncharik S.V., Parashchuk V.V., Filatova I.I. Investigation of Plasma Parameters and Electrical Characteristics of a Barrier Discharge During Plasma Treatment of Granular Materials. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):487-496. (In Russ.)

Views: 166


ISSN 0514-7506 (Print)