Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the Interaction of Naringenin, Apigenin and Menadione with Membranes using Fluorescent Probes and Quantum Chemistry

Abstract

We performed quantum chemical modeling of the optimal geometry of naringenin, apigenin and menadione and evaluated their electronic properties and interactions with artificial liposomal membranes using fluorescence probe spectroscopy. The fluorescence analysis demonstrated that the flavonoids and quinones under study strongly interacted with 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomal membranes. Using the fluorescent probes TMA-DPH and DPH, incorporated in the lipid bilayer, we showed that apigenin and naringenin (5-50 µM) and menadione (50 µM) decreased the microfluidity of the liposomal membrane bilayer at different depths and apigenin rather than menadione and naringenin effectively quenched the fluorescence of these probes TMA-DPH and DPH. Interaction of the studied compounds with the membranes depended on the polarity, volume, geometry and water solubility of the molecules. Using the Laurdan probe we observed that naringenin and menadione dose-dependently transferred the bilayer to a more ordered state, whereas apigenin decreased the order of lipid molecule packing and increased hydration in the region of polar head groups due to incorporation of the effectors into the liposomes. The torsion angle between the rings of the planar menadione and apigenin molecules was equal to 180°, while that of the naringenin molecule was equal to 86.4°, respectively. The cranberry flavonoids in the glycosylated form (25-50 µg/mL) slightly increased the microfluidity of the liposomal membrane in the region of the polar head groups.

About the Authors

A. G. Veiko
Yanka Kupala Grodno State University
Belarus

Grodno



E. A. Lapshina
Yanka Kupala Grodno State University
Belarus

Grodno



H. G. Yukhnevich
Yanka Kupala Grodno State University
Belarus

Grodno



I. B. Zavodnik
Yanka Kupala Grodno State University
Belarus

Grodno



References

1. A. N. Panche, A. D. Diwan, S. R. Chandra. J. Nutr. Sci., 5, (2016) e47

2. F. Shahidi, P. Ambigaipalan. J. Funct. Foods, 18 (2015) 820—897

3. D. M. Kopustinskiene, V. Jakstas, A. Savickas, J. Bernatoniene. Nutrients, 12, N 2 (2020) 457

4. Y. Xie, W. Yang, F. Tang, X. Chen, L. Ren. Current Med. Chem., 22, N 1 (2015) 132—149

5. V. Buko, I. Zavodnik, O. Kanuka, E. Belonovskaya, E. Naruta, O. Lukivskaya, S. Kirko, G. Budryn, D. Zyzelewicz, J. Oracz, N. Sybirna. Food Funct., 9, N 3 (2018) 1850—1863

6. V. Buko, E. Belonovskaya, T. Kavalenia, T. Ilyich, S. Kirko, I. Kuzmitskaya, V. Moroz, E. Lapshina, A. Romanchuk, I. Zavodnik. Eur. Pharm. J., 69, N 2 (2022) 5—16

7. A. G. Veiko, E. Olchowik-Grabarek, S. Sekowski, A. Roszkowska, E. A. Lapshina, I. Dobrzynska, M. Zamaraeva, I. B. Zavodnik. Molecules, 28, N 3 (2023) 1252

8. A. Maroziene, A. Nemeikaite-Ceniene, R. Vidziunaite, N. Cenas. Acta Biochim. Polonica, 59, N 2 (2012) 299—305

9. J. P. Monteiro, A. F. Martins, C. Nunes, C. M. Morais, M. Lucio, S. Reis, T. J. T. Pinheiro, C. F. G. C. Geraldes, P. J. Oliveira, A. S. Jurado. Biochim. Biophys. Acta (BBA) — Biomembranes, 1828, N 8 (2013) 1899—1908

10. S. R. Tintino, V. C. A. de Souza, J. M. A. da Silva, C. D. de M. Oliveira-Tintino, P. S. Pereira, T. C. Leal-Balbino, A. Pereira-Neves, J. P. Siqueira-Junior, J. G. M. da Costa, F. F. G. Rodrigues, I. R. A. Menezes, G. C. A. da Hora, M. C. P. Lima, H. D. M. Coutinho, V. Q. Balbino. Membranes, 10, N 6 (2020) 130

11. E. A. Lapshina, M. Zamaraeva, V. T. Cheshchevik, E. Olchowik-Grabarek, S. Sekowski, I. Zukowska, N. G. Golovach, V. N. Burd, I. B. Zavodnik. Cell Biochem. Funct., 33, N 4 (2015) 202—210

12. A. G. Veiko, S. Sekowski, E. A. Lapshina, A. Z. Wilczewska, K. H. Markiewicz, M. Zamaraeva, H. Zhao, I. B. Zavodnik. Biochim. Biophys. Acta (BBA) — Biomembranes, 1862, N 11 (2020) 183442

13. S. A. Sanchez, M. A. Tricerri, E. Gratton Proc. NAS, 109, N 19 (2012) 7314—7319

14. A. Arora, T. M. Byrem, M. G. Nair, G. M. Strasburg. Arch. Biochem. Biophys., 373, N 1 (2000) 102—109

15. S. V. Verstraeten, G. K. Jaggers, C. G. Fraga, P. I. Oteiza. Biochim. Biophys. Acta (BBA) — Biomembranes, 1828, N 11 (2013) 2646—2653

16. J. Wen, B. Liu, E. Yuan, Y. Ma, Y. Zhu. Molecules, 15, N 6 (2010) 4401—4407

17. W. Alam, C. Rocca, H. Khan, Y. Hussain, M. Aschner, A. De Bartolo, N. Amodio, T. Angelone, W. S. Cheang. Antioxidants, 10, N 10 (2021) 1643

18. https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=menadione (accessed on 07.03.2023)

19. P. Tammela, L. Laitinen, A. Galkin, T. Wennberg, R. Heczko, H. Vuorela, J. P. Slotte. Arch. Biochem. Biophys., 425, N 2 (2004) 193—199

20. A. de Granada-Flor, C. Sousa, H. A. L. Filipe, M. S. C. S. Santos, R. F. M. de Almeida. Chem. Commun., 55, N 12 (2019) 1750—1753

21. O. Wesolowska, J. Gąsiorowska, J. Petrus, B. Czarnik-Matusewicz, K. Michalak. Biochim. Biophys. Acta (BBA) — Biomembranes, 1838, N 1 (2014) 173—184

22. Y. S. Tarahovsky, E. N. Muzafarov, Y. A. Kim. Mol. Cell Biochem., 314, N 1 (2008) 65—71


Review

For citations:


Veiko A.G., Lapshina E.A., Yukhnevich H.G., Zavodnik I.B. Study of the Interaction of Naringenin, Apigenin and Menadione with Membranes using Fluorescent Probes and Quantum Chemistry. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):415-422. (In Russ.)

Views: 165


ISSN 0514-7506 (Print)