Study of the Interaction of Naringenin, Apigenin and Menadione with Membranes using Fluorescent Probes and Quantum Chemistry
Abstract
We performed quantum chemical modeling of the optimal geometry of naringenin, apigenin and menadione and evaluated their electronic properties and interactions with artificial liposomal membranes using fluorescence probe spectroscopy. The fluorescence analysis demonstrated that the flavonoids and quinones under study strongly interacted with 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomal membranes. Using the fluorescent probes TMA-DPH and DPH, incorporated in the lipid bilayer, we showed that apigenin and naringenin (5-50 µM) and menadione (50 µM) decreased the microfluidity of the liposomal membrane bilayer at different depths and apigenin rather than menadione and naringenin effectively quenched the fluorescence of these probes TMA-DPH and DPH. Interaction of the studied compounds with the membranes depended on the polarity, volume, geometry and water solubility of the molecules. Using the Laurdan probe we observed that naringenin and menadione dose-dependently transferred the bilayer to a more ordered state, whereas apigenin decreased the order of lipid molecule packing and increased hydration in the region of polar head groups due to incorporation of the effectors into the liposomes. The torsion angle between the rings of the planar menadione and apigenin molecules was equal to 180°, while that of the naringenin molecule was equal to 86.4°, respectively. The cranberry flavonoids in the glycosylated form (25-50 µg/mL) slightly increased the microfluidity of the liposomal membrane in the region of the polar head groups.
About the Authors
A. G. VeikoBelarus
Grodno
E. A. Lapshina
Belarus
Grodno
H. G. Yukhnevich
Belarus
Grodno
I. B. Zavodnik
Belarus
Grodno
References
1. A. N. Panche, A. D. Diwan, S. R. Chandra. J. Nutr. Sci., 5, (2016) e47
2. F. Shahidi, P. Ambigaipalan. J. Funct. Foods, 18 (2015) 820—897
3. D. M. Kopustinskiene, V. Jakstas, A. Savickas, J. Bernatoniene. Nutrients, 12, N 2 (2020) 457
4. Y. Xie, W. Yang, F. Tang, X. Chen, L. Ren. Current Med. Chem., 22, N 1 (2015) 132—149
5. V. Buko, I. Zavodnik, O. Kanuka, E. Belonovskaya, E. Naruta, O. Lukivskaya, S. Kirko, G. Budryn, D. Zyzelewicz, J. Oracz, N. Sybirna. Food Funct., 9, N 3 (2018) 1850—1863
6. V. Buko, E. Belonovskaya, T. Kavalenia, T. Ilyich, S. Kirko, I. Kuzmitskaya, V. Moroz, E. Lapshina, A. Romanchuk, I. Zavodnik. Eur. Pharm. J., 69, N 2 (2022) 5—16
7. A. G. Veiko, E. Olchowik-Grabarek, S. Sekowski, A. Roszkowska, E. A. Lapshina, I. Dobrzynska, M. Zamaraeva, I. B. Zavodnik. Molecules, 28, N 3 (2023) 1252
8. A. Maroziene, A. Nemeikaite-Ceniene, R. Vidziunaite, N. Cenas. Acta Biochim. Polonica, 59, N 2 (2012) 299—305
9. J. P. Monteiro, A. F. Martins, C. Nunes, C. M. Morais, M. Lucio, S. Reis, T. J. T. Pinheiro, C. F. G. C. Geraldes, P. J. Oliveira, A. S. Jurado. Biochim. Biophys. Acta (BBA) — Biomembranes, 1828, N 8 (2013) 1899—1908
10. S. R. Tintino, V. C. A. de Souza, J. M. A. da Silva, C. D. de M. Oliveira-Tintino, P. S. Pereira, T. C. Leal-Balbino, A. Pereira-Neves, J. P. Siqueira-Junior, J. G. M. da Costa, F. F. G. Rodrigues, I. R. A. Menezes, G. C. A. da Hora, M. C. P. Lima, H. D. M. Coutinho, V. Q. Balbino. Membranes, 10, N 6 (2020) 130
11. E. A. Lapshina, M. Zamaraeva, V. T. Cheshchevik, E. Olchowik-Grabarek, S. Sekowski, I. Zukowska, N. G. Golovach, V. N. Burd, I. B. Zavodnik. Cell Biochem. Funct., 33, N 4 (2015) 202—210
12. A. G. Veiko, S. Sekowski, E. A. Lapshina, A. Z. Wilczewska, K. H. Markiewicz, M. Zamaraeva, H. Zhao, I. B. Zavodnik. Biochim. Biophys. Acta (BBA) — Biomembranes, 1862, N 11 (2020) 183442
13. S. A. Sanchez, M. A. Tricerri, E. Gratton Proc. NAS, 109, N 19 (2012) 7314—7319
14. A. Arora, T. M. Byrem, M. G. Nair, G. M. Strasburg. Arch. Biochem. Biophys., 373, N 1 (2000) 102—109
15. S. V. Verstraeten, G. K. Jaggers, C. G. Fraga, P. I. Oteiza. Biochim. Biophys. Acta (BBA) — Biomembranes, 1828, N 11 (2013) 2646—2653
16. J. Wen, B. Liu, E. Yuan, Y. Ma, Y. Zhu. Molecules, 15, N 6 (2010) 4401—4407
17. W. Alam, C. Rocca, H. Khan, Y. Hussain, M. Aschner, A. De Bartolo, N. Amodio, T. Angelone, W. S. Cheang. Antioxidants, 10, N 10 (2021) 1643
18. https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=menadione (accessed on 07.03.2023)
19. P. Tammela, L. Laitinen, A. Galkin, T. Wennberg, R. Heczko, H. Vuorela, J. P. Slotte. Arch. Biochem. Biophys., 425, N 2 (2004) 193—199
20. A. de Granada-Flor, C. Sousa, H. A. L. Filipe, M. S. C. S. Santos, R. F. M. de Almeida. Chem. Commun., 55, N 12 (2019) 1750—1753
21. O. Wesolowska, J. Gąsiorowska, J. Petrus, B. Czarnik-Matusewicz, K. Michalak. Biochim. Biophys. Acta (BBA) — Biomembranes, 1838, N 1 (2014) 173—184
22. Y. S. Tarahovsky, E. N. Muzafarov, Y. A. Kim. Mol. Cell Biochem., 314, N 1 (2008) 65—71
Review
For citations:
Veiko A.G., Lapshina E.A., Yukhnevich H.G., Zavodnik I.B. Study of the Interaction of Naringenin, Apigenin and Menadione with Membranes using Fluorescent Probes and Quantum Chemistry. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):415-422. (In Russ.)