Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THE EFFECT OF SPHEROIDAL MAGNETIZED NANOPARTICLES ON THE LUMINESCENCE OF QUANTUM DOTS

Abstract

A spectral model of luminescence of a two-component exciton-activated quantum dot (QD) - spheroidal plasmon nanoparticle (NP) in a homogeneous external magnetic field is constructed. The model is constructed in the approximation of the tensor of the dipole electric polarizability of the nanoparticle, taking into account the dissipation of the excitation energy in the nanoparticle. A tensor representation of the permittivity of a magnetized electron plasma of a metal responsible for the formation of electric field characteristics in a spheroid is used. It is established that with a change in the eccentricity of the spheroid, the luminescence spectrum of the system changes, reflecting, among other things, the effect of an external magnetic field on both the radiation and dissipative properties of the binary quantum dot -nanoparticle complex.

About the Authors

Michael Kucherenko
Orenburg State University
Russian Federation

Doctor of Physical and Mathematical Sciences, Professor of the Department of Radiophysics and Electronics of Orenburg State University



Viktor Nalbandyan
Orenburg State University
Russian Federation

Candidate of Physical and Mathematical Sciences, Associate professor of the Department of Radiophysics and Electronics of Orenburg State University



References

1. L.B. Matyushkin, A. Pertsova, V.A. Moshnikov Technical Physics Letters, 44, N 4 (2018) 331–333

2. A.G. Bakanov, N.A. Toropov, T.A. Vartanyan. Optics and Spectroscopy 120 (2016): 477-481. DOI:10.7868/S0030403416030041

3. Yu. G. Galyametdinov, R. R. Shamilov, V. I. Nuzhdin, V. F. Valeev, A. L. Stepanov Technical Physics Letters, 42, N 4 (2016), 1067–1070. https://doi.org/10.1134/S1063785016110043

4. I. G. Grevtseva, T. A. Chevychelova, V. N. Derepko, O. V. Ovchinnikov, M. S. Smirnov, A.S.Perepelitsa, A. S. Parshina. Condensed Matter and Interphases, 23, N 1 (2021) 25–31

5. D.V. Guzatov, S.V. Gaponenko. Dokl. Nats. Academy of Sciences of Belarus, 63, N 6 (2019) 689–694. https://doi.org/10.29235/1561-8323-2019-63-6-689-694 .

6. Y.V. Vladimirova, V.N. Zadkov. Nanomaterials, 11, N 8 (2021) 1919. https://doi.org/10.3390/nano11081919 .

7. M.G. Kucherenko, V.M. Nalbandyan. Opt. Spectrosc. 128, (2020) 1910–1917. https://doi.org/10.1134/S0030400X20110156

8. M.G. Kucherenko, V.M. Nalbandyan, T.M. Chmereva. J. Opt. Technol. 88, N 9 (2021) 489-496 https://doi.org/10.1364/JOT.88.000489

9. S. Bhardwaj, N. K. Pathak, A. Ji, R. Uma, R.P. Sharma. Plasmonics, 12 (2017), 193-201. DOI 10.1007/s11468-016-0249-7.

10. Yu. V. Vladimirova, V. N. Zadkov. Physics-Uspekhi 65, N 3 (2022), 245

11. https://doi.org/10.3367/UFNe.2021.02.038944 .

12. D. Guzatov, V. Klimov. arXiv:1010.5760, (2010). https://doi.org/10.48550/arXiv.1010.5760 .

13. R. Sharma, S. Roopak, N.K. Pathak, R. Uma, R.P. Sharma. Plasmonics, 13 (2018) 335-343. DOI 10.1007/s11468-017-0518-0.

14. N.I. Grigorchuk. Europhysics Letters, 97, N 4 (2012) 45001. DOI 10.1209/0295-5075/97/45001.

15. N.K. Pathak, K.P. Senthil, R.P. Sharma. Plasmonics, 14 (2019) 63-70. https://doi.org/10.1007/s11468-018-0778-3.

16. A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio. International journal of nanotechnology, 6, N 10-11 (2009) 902-914. https://doi.org/10.1504/IJNT.2009.027554.

17. H. Mertens, A. Polman. Journal of applied physics, 105, N 4 (2009) doi.org/10.1063/1.3078108.

18. J. Wu, S. Lee, V.R. Reddy, M.O. Manasreh, B.D. Weaver, M.K. Yakes, G.J. Salamo. Materials Letters, 65, N 23-24 (2011) 3605-3608. https://doi.org/10.1016/j.matlet.2011.08.019.

19. M.G. Kucherenko, V.M. Nalbandyan. Journal of Optical Technology, 85, N 9 (2018) 524-530. https://doi.org/10.1364/JOT.85.000524

20. M.G. Kucherenko, V.M. Nalbandyan. Materials Today: Proceedings, 71 (2022) 46–57. https://doi.org/10.1016/j.matpr.2022.07.252.

21. Yu. A. Koksharov. Physics of the Solid State, 59, (2017) 722-727.

22. C.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. Journal of Nanophotonics, 12, N 4 (2018) 043506. https://doi.org/10.1117/1.JNP.12.043506.

23. C.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. ENHANCEMENT OF EDGE EMISSION OF ZnO NANORODS IN MAGNETIC FIELD. Zhurnal Prikladnoii Spektroskopii.;85, N 6 (2018) 1018-1020. (In Russ.)

24. M.G. Kucherenko, V.M. Nalbandyan, T.M. Chmereva. Optics and Spectroscopy, 130, N 5 (2022) 593-601 http://dx.doi.org/10.21883/EOS.2022.05.54445.9-22

25. M.G. Kucherenko, V.M. Nalbandyan, F.Y. Mushin, T.M. Chmereva. Journal of Optical Technology, 89, N 11 (2022) 642-650. https://doi.org/10.1364/JOT.89.000642

26. M.G. Kucherenko, V.M. Nalbandyan. Physics Procedia, 73 (2015) 136-142. https://doi.org/10.1016/j.phpro.2015.09.134.

27. M.G. Kucherenko, V.M. Nalbandyan, P.P. Neyasov, I.R. Alimbekov. Mater. All-Russian scientific method. confer. "University. the complex as a region. Center of Education, Science and Culture", January 26-27, 2022, Orenburg: Orenburg State University (2022) 2849-2856.

28. L.D. Landau, E.M. Lifshits Developed the theory of electrodynamics of continuous media. - Moscow: Fizmatlit, (2005). 44-46.

29. N.M. Yunos, T.K.A. Khairuddin, S. Shafie, T. Ahmad, W. Lionheart. Malaysian Journal of Fundamental and Applied Sciences 15, N 6 (2019) 784-789.

30. L.A. Apresyan, D.V. Vlasov. Journal of Technical Physics, 84. N 12 (2014) 23-28.

31. G. J. Goldsmith. Problems in solid state physics: translated from the English by A.A. Gusev, M.P. Shaskolskaya. Moscow: Nauka, (1976) 387-390.

32. V.L. Ginzburg, A.A. Rukhadze. Waves in magnetoactive plasma. Moscow: Nauka, (1975). 101-112.

33. M.G. Kucherenko, V.M. Nalbandyan. Eurasian Physical Technical Journal, 15, N. 2(30) (2018) 49-57.


Supplementary files

1. Рисунки
Subject
Type Исследовательские инструменты
Download (10MB)    
Indexing metadata ▾
2. PDF статьи c рисунками
Subject
Type Исследовательские инструменты
Download (981KB)    
Indexing metadata ▾
3. Авторская справка
Subject
Type Исследовательские инструменты
Download (230KB)    
Indexing metadata ▾
4. Возможные рецензенты статьи
Subject
Type Исследовательские инструменты
Download (47KB)    
Indexing metadata ▾
5. Письмо-рекомендация
Subject
Type Исследовательские инструменты
Download (218KB)    
Indexing metadata ▾
6. Справка о том, что статья публикуется впервые
Subject
Type Исследовательские инструменты
View (214KB)    
Indexing metadata ▾
7. Экспертное заключение
Subject
Type Исследовательские инструменты
Download (444KB)    
Indexing metadata ▾

Review

For citations:


Kucherenko M., Nalbandyan V. THE EFFECT OF SPHEROIDAL MAGNETIZED NANOPARTICLES ON THE LUMINESCENCE OF QUANTUM DOTS. Zhurnal Prikladnoii Spektroskopii. 2024;91(1).

Views: 59


ISSN 0514-7506 (Print)