Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames
Abstract
Comparative studies of charge carrier concentration (n) and relative strain (e) in graphene synthesized with chemical vapor deposition and transferred to the surface of SiO2/Si substrate using two different frames, polymethylmethacrylate (PMMA) and paraffin, followed by complex processing, were carried out. The correlation method for determining the positions of Raman active modes was implemented for the analysis. It was established that in the case of paraffin, the concentration of charge carriers in graphene was initially lower than for PMMA. Further liquid phase and heat treatment used to remove the paraffin frame led to an increase in n up to 1.2×1013 cm–2. For graphene samples transferred using a PMMA frame, no clear trend in the change in n was observed, regardless of the types of processing. At the same time, the spread of e values for graphene transferred with paraffin followed by liquid phase and heat treatment in vacuum was greater than for graphene transferred with PMMA and passed through a similar treatment, –0.01875 — –0.1488% and –0.04375 — –0.0875%, respectively. The results obtained during the study made it possible to establish that, in addition to the transfer frame material itself, a combination of processing methods had a decisive impact on the quality of graphene. Optimization of these parameters made it possible to increase the efficiency of the graphene transfer technique with a simultaneous improvement in the performance characteristics of graphene nanoelectronic devices.
About the Authors
E. A. DroninaBelarus
Minsk
M. M. Mikhalik
Belarus
Minsk
N. G. Kovalchuk
Belarus
Minsk
K. A. Niherysh
Belarus
Minsk
A. V. Felsharuk
Belarus
Minsk
S. L. Prischepa
Belarus
Minsk;
Moscow
I. V. Komissarov
Belarus
Minsk
References
1. S. Ullah, X. Yang, H. Q. Ta, M. Hasan, A. Bachmatiuk, K. Tokarska, B. Trzebicka, F.Lei, M. H. Rummeli. Nano Res., 14, N 11 (2021) 3756—3772
2. Y. Chen, X. L. Gong, J. G. Gai. Adv. Sci., 3, N 8 (2016) 1—15
3. X. L. Liang, B. A. Sperling, I. Calizo, G. J. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. L. Peng, Q. L. Li, X. X. Zhu, H. Yuan, A. R. H. Walker, Z. F. Liu, L. M. Peng, C. A. Richter. ACS Nano, 5, N 11 (2011) 9144—9153
4. C. Gong, H. C. Floresca, D. Hinojos, S. McDonnell, X. Y. Qin, Y. F. Hao, S. Jandhyala, G. Mordi, J. Kim, L. Colombo, R. S. Ruoff, M. J. Kim, K. Cho, R. M. Wallace, Y. J. Chabal. J. Phys. Chem. C, 117, N 44 (2013) 23000—23008
5. Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, P. W. Chiu. Nano Lett., 12, N 1 (2012) 414—419
6. A. Suhail, K. Islam, B. Li, D. Jenkins, G. Pan. Appl. Phys. Lett., 110, N 18 (2017) 183103
7. H. J. Jeong, H. Y. Kim, S. Y. Jeong, J. T. Han, K. J. Baeg, J. Y. Hwang, G. W. Lee. Carbon, 66 (2014) 612—618
8. A. Pirkle, J. Chan, A. Venugopa, D. Hinojos, C. W. Magnuson, S. McDonnell1, L. Colombo, E. M. Vogel, R. S. Ruoff, R. M. Wallace. Appl. Phys. Lett., 99, N 12 (2011) 122108
9. W. S. Leong, H. Wang, J. Yeo, F. J. Martin-Martinez, A. Zubair, P. C. Shen, Y. Mao, T. Palacios, M. J. Buehler, J. Y. Hong, J. Kong. Nature Commun., 10, N 1 (2019) 1—8
10. P. W. Qi, Y. N. Huang, Y. Z. Yao, Q. Li, Y. B. Lian, L. Lin, X. B. Wang, Y. D. Gu, L. Q. Li, Z. Deng, Y. Peng, Z. Liu. Appl. Surface Sci., 493 (2019) 81—86
11. E. Ó. Faoláin, M. B. Hunter, J. M. Byrne, P. Kelehan, H. A. Lambkin, H. J. Byrne, F. M. Lyng. J. Histochem. Cytochem., 53, N 1 (2005) 121—129
12. Qu, Jingyi, B. W. Li, Y. Shen, S. Huo, Y. Xu, S. Liu, B. Song, H. Wang, C. Hu, W. Feng. ACS Appl. Mater. Interfaces, 11, N 18 (2019) 16272—16279
13. B. Zhuang, S. Li, S. Li, J.Yin. Carbon, 173 (2021) 609—636
14. Н. Г. Ковальчук, К. А. Нигериш, М. М. Михалик, Н. И. Каргин, И. В. Комиссаров, С. Л. Прищепа. Журн. прикл. спектр., 84, № 6 (2018) 915—919 [N. G. Kovalchuk, K. A. Nigerish, M. M. Mikhalik, N. I. Kargin, I. V. Komissarov, S. L. Prischepa. J. Appl. Spectr., 84 (2018) 995—998]
15. K. A. Niherysh, J. Andzane, M. M. Mikhalik, S. M. Zavadsky, P. L. Dobrokhotov, F. Lombardi, S. L. Prischepa, I. V. Komissarov, D. Erts. Nanoscale Adv., 3, N 22 (2021) 6395—6402
16. E. A. Kolesov, M. S. Tivanov, O. V. Korolik, E. Yu. Kataev, F. Xiao, O. O. Kapitanova, H. D. Cho, T. W. Kang, G. N. Panin. J. Phys. D: Appl. Phys., 53, N 4 (2019) 045302
17. J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, C. Casiraghi. Nano Lett., 12, N 2 (2012) 617—621
18. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, S. Ryu. Nature Commun., 3, N 1 (2012) 1—8
19. B. S. Ryu, L. E. Brus, T. F. Heinz. Nano Lett., 9, N 1 (2009) 346—352
20. A. C. Ferrari, D. M. Basko. Nature Nanotechnol., 8, N 4 (2013) 235—246
21. S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, L. E. Brus. Nano Lett., 10, N 12 (2010) 4944—4951
Review
For citations:
Dronina E.A., Mikhalik M.M., Kovalchuk N.G., Niherysh K.A., Felsharuk A.V., Prischepa S.L., Komissarov I.V. Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):584-592. (In Russ.)