Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames

Abstract

Comparative studies of charge carrier concentration (n) and relative strain (e) in graphene synthesized with chemical vapor deposition and transferred to the surface of SiO2/Si substrate using two different frames, polymethylmethacrylate (PMMA) and paraffin, followed by complex processing, were carried out. The correlation method for determining the positions of Raman active modes was implemented for the analysis. It was established that in the case of paraffin, the concentration of charge carriers in graphene was initially lower than for PMMA. Further liquid phase and heat treatment used to remove the paraffin frame led to an increase in n up to 1.2×1013 cm–2. For graphene samples transferred using a PMMA frame, no clear trend in the change in n was observed, regardless of the types of processing. At the same time, the spread of e values for graphene transferred with paraffin followed by liquid phase and heat treatment in vacuum was greater than for graphene transferred with PMMA and passed through a similar treatment, –0.01875 — –0.1488% and –0.04375 — –0.0875%, respectively. The results obtained during the study made it possible to establish that, in addition to the transfer frame material itself, a combination of processing methods had a decisive impact on the quality of graphene. Optimization of these parameters made it possible to increase the efficiency of the graphene transfer technique with a simultaneous improvement in the performance characteristics of graphene nanoelectronic devices.

About the Authors

E. A. Dronina
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



M. M. Mikhalik
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



N. G. Kovalchuk
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



K. A. Niherysh
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



A. V. Felsharuk
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



S. L. Prischepa
Belarusian State University of Informatics and Radioelectronics; National Research Nuclear University MEPHI
Belarus

Minsk;

Moscow



I. V. Komissarov
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



References

1. S. Ullah, X. Yang, H. Q. Ta, M. Hasan, A. Bachmatiuk, K. Tokarska, B. Trzebicka, F.Lei, M. H. Rummeli. Nano Res., 14, N 11 (2021) 3756—3772

2. Y. Chen, X. L. Gong, J. G. Gai. Adv. Sci., 3, N 8 (2016) 1—15

3. X. L. Liang, B. A. Sperling, I. Calizo, G. J. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. L. Peng, Q. L. Li, X. X. Zhu, H. Yuan, A. R. H. Walker, Z. F. Liu, L. M. Peng, C. A. Richter. ACS Nano, 5, N 11 (2011) 9144—9153

4. C. Gong, H. C. Floresca, D. Hinojos, S. McDonnell, X. Y. Qin, Y. F. Hao, S. Jandhyala, G. Mordi, J. Kim, L. Colombo, R. S. Ruoff, M. J. Kim, K. Cho, R. M. Wallace, Y. J. Chabal. J. Phys. Chem. C, 117, N 44 (2013) 23000—23008

5. Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, P. W. Chiu. Nano Lett., 12, N 1 (2012) 414—419

6. A. Suhail, K. Islam, B. Li, D. Jenkins, G. Pan. Appl. Phys. Lett., 110, N 18 (2017) 183103

7. H. J. Jeong, H. Y. Kim, S. Y. Jeong, J. T. Han, K. J. Baeg, J. Y. Hwang, G. W. Lee. Carbon, 66 (2014) 612—618

8. A. Pirkle, J. Chan, A. Venugopa, D. Hinojos, C. W. Magnuson, S. McDonnell1, L. Colombo, E. M. Vogel, R. S. Ruoff, R. M. Wallace. Appl. Phys. Lett., 99, N 12 (2011) 122108

9. W. S. Leong, H. Wang, J. Yeo, F. J. Martin-Martinez, A. Zubair, P. C. Shen, Y. Mao, T. Palacios, M. J. Buehler, J. Y. Hong, J. Kong. Nature Commun., 10, N 1 (2019) 1—8

10. P. W. Qi, Y. N. Huang, Y. Z. Yao, Q. Li, Y. B. Lian, L. Lin, X. B. Wang, Y. D. Gu, L. Q. Li, Z. Deng, Y. Peng, Z. Liu. Appl. Surface Sci., 493 (2019) 81—86

11. E. Ó. Faoláin, M. B. Hunter, J. M. Byrne, P. Kelehan, H. A. Lambkin, H. J. Byrne, F. M. Lyng. J. Histochem. Cytochem., 53, N 1 (2005) 121—129

12. Qu, Jingyi, B. W. Li, Y. Shen, S. Huo, Y. Xu, S. Liu, B. Song, H. Wang, C. Hu, W. Feng. ACS Appl. Mater. Interfaces, 11, N 18 (2019) 16272—16279

13. B. Zhuang, S. Li, S. Li, J.Yin. Carbon, 173 (2021) 609—636

14. Н. Г. Ковальчук, К. А. Нигериш, М. М. Михалик, Н. И. Каргин, И. В. Комиссаров, С. Л. Прищепа. Журн. прикл. спектр., 84, № 6 (2018) 915—919 [N. G. Kovalchuk, K. A. Nigerish, M. M. Mikhalik, N. I. Kargin, I. V. Komissarov, S. L. Prischepa. J. Appl. Spectr., 84 (2018) 995—998]

15. K. A. Niherysh, J. Andzane, M. M. Mikhalik, S. M. Zavadsky, P. L. Dobrokhotov, F. Lombardi, S. L. Prischepa, I. V. Komissarov, D. Erts. Nanoscale Adv., 3, N 22 (2021) 6395—6402

16. E. A. Kolesov, M. S. Tivanov, O. V. Korolik, E. Yu. Kataev, F. Xiao, O. O. Kapitanova, H. D. Cho, T. W. Kang, G. N. Panin. J. Phys. D: Appl. Phys., 53, N 4 (2019) 045302

17. J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, C. Casiraghi. Nano Lett., 12, N 2 (2012) 617—621

18. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, S. Ryu. Nature Commun., 3, N 1 (2012) 1—8

19. B. S. Ryu, L. E. Brus, T. F. Heinz. Nano Lett., 9, N 1 (2009) 346—352

20. A. C. Ferrari, D. M. Basko. Nature Nanotechnol., 8, N 4 (2013) 235—246

21. S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, L. E. Brus. Nano Lett., 10, N 12 (2010) 4944—4951


Review

For citations:


Dronina E.A., Mikhalik M.M., Kovalchuk N.G., Niherysh K.A., Felsharuk A.V., Prischepa S.L., Komissarov I.V. Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):584-592. (In Russ.)

Views: 184


ISSN 0514-7506 (Print)