Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Algorithm for Processing Lidar Sensing Data of Ozone in the Atmosphere

Abstract

The algorithm for processing lidar sensing data at wavelengths of 299/341 nm for a vertical atmospheric sensing trace with spatial resolution of 1.5—150 m has been developed and implemented. The program includes the main functions: recording the data of lidar sensing of the atmosphere, converting the dat binary file format to the text txt format, retrieval of ozone concentration profiles. The software package developed on the basis of the created algorithm for processing lidar sensing data allows one to obtain ozone concentration profiles from 4 to 20 km. The data recording units for lidar sensing of the atmosphere and retrieval of ozone concentration profiles provide visual monitoring of recorded echo signals and retrieved ozone concentration profiles. An example of retrieving the ozone concentration profile from lidar data is given.

About the Authors

A. A. Nevzorov
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



A. V. Nevzorov
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



A. I. Nadeev
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



N. G. Zaitsev
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



Ya. O. Romanovskii
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



O. V. Kharchenko
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



N. S. Kravtsova
V. E. Zuev Institute of Atmospheric Optics of the Russian Academy of Sciences
Russian Federation

Tomsk



References

1. С. М. Бобровников, Г. Г. Матвиенко, О. А. Романовский, И. Б. Сериков, А. Я. Суханов. Лидарный спектроскопический газоанализ атмосферы, Томск, ИОА СО РАН (2014)

2. B. Hassler, I. Petropavlovskikh, J. Staehelin, et al. Atm. Meas. Tech., 7, N 5 (2014) 1395—1427; https://doi.org/10.5194/amt-7-1395-2014

3. I. Stuart McDermid, S. M. Godin, L. O. Lindquist. Appl. Opt., 29, N 25 (1990) 3603—3612

4. I. S. McDermid, G. Beyerle, D. A. Haner, T. Leblanc. Appl. Opt., 41, N 36 (2002) 7550—7555

5. S. Godin-Beekmanna, T. Songa, B. Heeseb. Proc. SPIE, 4893 (2003) 251—263

6. A. Gaudel, G. Ancellet, S. Godin-Beekmann. Atm. Environ., 113 (2015) 78—89

7. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, Yu. V. Gridnev, O. V. Kharchenko. Atmosphere, 11, N 2 (2020) 196

8. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. Remote Sens., 9, N 5 (2017) 447

9. X. Fang, T. Li, C. Ban, Z. Wu, J. Li, F. Li, Y. Cen, B. Tian. Opt. Express, 27 (2019) 4126—4139

10. P. J. Nair, S. Godin-Beekmann, L. Froidevaux, et al. Atm. Meas. Tech., 5, N 6 (2012) 1301—1318

11. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. J. Remote Sens., 41, N 22 (2020) 8590—8609

12. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. J. Appl. Spectr., 85, N 6 (2018) 1114—1120

13. R. M. Measures. Laser Remote Sensing: Fundamentals and Applications, Malabar, Krieger Publishing Company (1992)

14. С. Л. Бондаренко, А. В. Ельников, В. В. Зуев. Опт. атм. и океана, 6, № 10 (1993) 1268—1277

15. А. В. Ельников, В. Н. Маричев, К. Д. Шелевой, Д. И. Шелефонтюк. Опт. атм. и океана, 1, № 4 (1988) 117—123

16. V. V. Zuev, V. E. Zuev, Yu. S. Makushkin, V. N. Marichev, A. A. Mitsel. Appl. Opt., 22, N 23 (1983) 3742—3746


Review

For citations:


Nevzorov A.A., Nevzorov A.V., Nadeev A.I., Zaitsev N.G., Romanovskii Ya.O., Kharchenko O.V., Kravtsova N.S. Algorithm for Processing Lidar Sensing Data of Ozone in the Atmosphere. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):627-634. (In Russ.)

Views: 189


ISSN 0514-7506 (Print)