Algorithm for Processing Lidar Sensing Data of Ozone in the Atmosphere
Abstract
The algorithm for processing lidar sensing data at wavelengths of 299/341 nm for a vertical atmospheric sensing trace with spatial resolution of 1.5—150 m has been developed and implemented. The program includes the main functions: recording the data of lidar sensing of the atmosphere, converting the dat binary file format to the text txt format, retrieval of ozone concentration profiles. The software package developed on the basis of the created algorithm for processing lidar sensing data allows one to obtain ozone concentration profiles from 4 to 20 km. The data recording units for lidar sensing of the atmosphere and retrieval of ozone concentration profiles provide visual monitoring of recorded echo signals and retrieved ozone concentration profiles. An example of retrieving the ozone concentration profile from lidar data is given.
About the Authors
A. A. NevzorovRussian Federation
Tomsk
A. V. Nevzorov
Russian Federation
Tomsk
A. I. Nadeev
Russian Federation
Tomsk
N. G. Zaitsev
Russian Federation
Tomsk
Ya. O. Romanovskii
Russian Federation
Tomsk
O. V. Kharchenko
Russian Federation
Tomsk
N. S. Kravtsova
Russian Federation
Tomsk
References
1. С. М. Бобровников, Г. Г. Матвиенко, О. А. Романовский, И. Б. Сериков, А. Я. Суханов. Лидарный спектроскопический газоанализ атмосферы, Томск, ИОА СО РАН (2014)
2. B. Hassler, I. Petropavlovskikh, J. Staehelin, et al. Atm. Meas. Tech., 7, N 5 (2014) 1395—1427; https://doi.org/10.5194/amt-7-1395-2014
3. I. Stuart McDermid, S. M. Godin, L. O. Lindquist. Appl. Opt., 29, N 25 (1990) 3603—3612
4. I. S. McDermid, G. Beyerle, D. A. Haner, T. Leblanc. Appl. Opt., 41, N 36 (2002) 7550—7555
5. S. Godin-Beekmanna, T. Songa, B. Heeseb. Proc. SPIE, 4893 (2003) 251—263
6. A. Gaudel, G. Ancellet, S. Godin-Beekmann. Atm. Environ., 113 (2015) 78—89
7. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, Yu. V. Gridnev, O. V. Kharchenko. Atmosphere, 11, N 2 (2020) 196
8. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. Remote Sens., 9, N 5 (2017) 447
9. X. Fang, T. Li, C. Ban, Z. Wu, J. Li, F. Li, Y. Cen, B. Tian. Opt. Express, 27 (2019) 4126—4139
10. P. J. Nair, S. Godin-Beekmann, L. Froidevaux, et al. Atm. Meas. Tech., 5, N 6 (2012) 1301—1318
11. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. J. Remote Sens., 41, N 22 (2020) 8590—8609
12. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko. J. Appl. Spectr., 85, N 6 (2018) 1114—1120
13. R. M. Measures. Laser Remote Sensing: Fundamentals and Applications, Malabar, Krieger Publishing Company (1992)
14. С. Л. Бондаренко, А. В. Ельников, В. В. Зуев. Опт. атм. и океана, 6, № 10 (1993) 1268—1277
15. А. В. Ельников, В. Н. Маричев, К. Д. Шелевой, Д. И. Шелефонтюк. Опт. атм. и океана, 1, № 4 (1988) 117—123
16. V. V. Zuev, V. E. Zuev, Yu. S. Makushkin, V. N. Marichev, A. A. Mitsel. Appl. Opt., 22, N 23 (1983) 3742—3746
Review
For citations:
Nevzorov A.A., Nevzorov A.V., Nadeev A.I., Zaitsev N.G., Romanovskii Ya.O., Kharchenko O.V., Kravtsova N.S. Algorithm for Processing Lidar Sensing Data of Ozone in the Atmosphere. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):627-634. (In Russ.)