Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Hydriodic Acid Adding

Abstract

Caesium-lead-triiodide (CsPbI3) – based inorganic perovskites are the most perspective material for production of perovskite solar cells (PSC) due to the optimal width of energy gap in them, about 1.72 eV and high light absorption coefficient. The latter is the characteristic of the cubic structure of CsPbI3, called the black phase. To form such a structure at relatively low temperatures, it is required to add hydroiodic acid (HI) to the perovskite solution from which the structure is prepared. Structural, morphological, optical and photoelectrical parameters of CsPbI3 solar cells at various concentrations (added quantity) of HI acid have been studied. The most important characteristics of CsPbI3 – based PSC with maximum efficiency of 8.85% obtained at HI acid concentration of 66 µl/ml are described.

About the Authors

E. A. Zakhidov
Institute of Ion-Plasma and Laser Technologies of Academy of Sciences of the Republic of Uzbekistan
Uzbekistan


Sh. K. Nematov
Mirzo Ulugbek National University of Uzbekistan
Uzbekistan


A. A. Saparbaev
Institute of Ion-Plasma and Laser Technologies of Academy of Sciences of the Republic of Uzbekistan; Mirzo Ulugbek National University of Uzbekistan; Islam Karimov Tashkent State Technical University
Uzbekistan


L. R. Nurumbetova
Institute of Ion-Plasma and Laser Technologies of Academy of Sciences of the Republic of Uzbekistan; Islam Karimov Tashkent State Technical University
Uzbekistan


B. G. Khidirov
Institute of Ion-Plasma and Laser Technologies of Academy of Sciences of the Republic of Uzbekistan; Islam Karimov Tashkent State Technical University
Uzbekistan


A. Yu. Turgunboev
Institute of Ion-Plasma and Laser Technologies of Academy of Sciences of the Republic of Uzbekistan; Islam Karimov Tashkent State Technical University
Uzbekistan


References

1. Wang, K. Li, R. Wang, Z.-K. Wang, M. Li, Y. Zhang, H. Ma, L.-S. Liao, Y. Yang. Nano Lett., 19, N 8 (2019) 5176—5184

2. E. Zakhidov, M. Imomov, V. Quvondikov, S. Nematov, I. Tajibaev, A. Saparbaev, I. Ismail, B. Shahid, R. Yang. Appl. Phys. A, 125 (2019) 1—7

3. E. Zakhidov, S. Nematov, A. Saparbaev, T. Ilkhomjon, L. Nurumbetova, B. Khidirov, I. Boynazarov, A. Turgunboev, F. Ruziyev. Uzbek Phys. J., 25, N 1 (2023)

4. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao. Sci. Adv., 3, N 9 (2017) e1700841

5. Z. Yao, W. Zhao, S. F. Liu. J. Mater. Chem. A, 9, N 18 (2021) 11124—11144

6. C. Gao, H. Dong, X. Bao, Y. Zhang, A. Saparbaev, L. Yu, S. Wen, R. Yang, L. Dong. J. Mater. Chem. C, 6, N 30 (2018) 8234—8241

7. L.-K. Gao, Y.-L. Tang. ACS Omega, 6, N 17 (2021) 11545—11555

8. A. Saparbaev, C. Gao, D. Zhu, Z. Liu, X. Qu, X. Bao, R. Yang. J. Power Sources, 426 (2019) 61—66

9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. J. Am. Chem. Soc., 131, N 17 (2009) 6050—6051

10. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, M. J. Kim, Y. K. Kim, K. S. Kim, T. J. Shin. Nature, 598, N 7881 (2021) 444—450

11. K. Wang, Z. Li, F. Zhou, H. Wang, H. Bian, H. Zhang, Q. Wang, Z. Jin, L. Ding, S. Liu. Adv. Energy Mater., 9, N 42 (2019) 1902529

12. C. F. J. Lau, Z. Wang, N. Sakai, J. Zheng, C. H. Liao, M. Green, S. Huang, H. J. Snaith, A. H. Baillie. Adv. Energy Mater., 9, N 36 (2019) 1901685

13. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen. Science, 15 (2019) 156—164

14. Y. Chen, X. Liu, T. Wang, Y. Zhao. Acc. Chem. Res., 54, N 17 (2021) 3452—3461

15. Y. Wu, H. Wei, L. Xu, B. Cao, H. Zeng. J. Appl. Phys., 128, N 5 (2020): 050903.

16. G. Yuan, S. Qin, X. Wu, H. Ding, A. Lu. Phase Trans., 91, N 1 (2018) 38—47

17. L. Wang, B. Fan, B. Zheng, Z. Yang, P. Yin, L. Huo. Sustainable Energy Fuels, 4, N 5 (2020) 2134—2148

18. Y. Guo, H. Liu, W. Li, L. Zhu, H. Chen. Solar RRL, 4, N 12 (2020) 2000380

19. A. Saparbaev, M. Zhang, V. Kuvondikov, L. Nurumbetova, I. O. Raji, I. Tajibaev, E. Zakhidov, X. Bao, R. Yang. Solar Energy, 228 (2021) 405—412

20. Q. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu, P. Gao, X. Zhang, J. You. Small, 16, N 50 (2020) 2005246

21. B. Wang, Y.‐H. Zhou, S. Yuan, Y.‐H. Lou, K.‐L. Wang, Y. Xia, C.‐H. Chen, Y. R. Shi, Z. K. Wang, L. S. Liao. Angew. Chem. Int. Ed., 62, N 21 (2023) e202219255

22. C. Weerd, L. Gomez, A. Capretti, D. M. Lebrun, E. Matsubara, J. Lin, M. Ashida, F. C. Spoor, L. D. Siebbeles, A. J. Houtepen, K. Suenaga. Nature Comm., 9, N 1 (2018) 4199

23. H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim. Nano Energy, 7 (2014) 80—85

24. Q. Zhao, A. Hazarika, L. T. Schelhas, J. Liu, E. A. Gaulding, G. Li, M. Zhang, M. F. Toney, P. C. Sercel, J. M. Luther. ACS Energy Lett., 5, N 1 (2019) 238—247

25. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith. J. Mater. Chem. A, 3, N 39 (2015) 19688—19695

26. P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu. J. Phys. Chem. Lett., 7, N 18 (2016) 3603—3608

27. J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han, Y. Yang, J. Liu, T. Yang, T. Chen, N. Yuan, J. Ding. Adv. Mater., 34, N 41 (2022) 2202735

28. Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang. Joule, 1, N 2 (2017) 371—382

29. W. Chu, W. A. Saidi, J. Zhao, O. V. Prezhdo. Angew. Chem. Int. Ed., 59, N 16 (2020) 6435—6441

30. Y. Guo, H. Liu, W. Li, L. Zhu, H. Chen. Solar RRL, 4, N 12 (2020) 2000380

31. F. Muniz, T. Leitao, M. A. R. Miranda, Cássio Morilla dos Santos, J. M. Sasaki. Acta Crystallograph. A: Found. Adv., 72, N 3 (2016) 385—390


Review

For citations:


Zakhidov E.A., Nematov Sh.K., Saparbaev A.A., Nurumbetova L.R., Khidirov B.G., Turgunboev A.Yu. Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Hydriodic Acid Adding. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):640-647. (In Russ.)

Views: 188


ISSN 0514-7506 (Print)