Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopic Properties Including Line Strengths, Wavelengths, and Transition Probabilities for Hf LXII

Abstract

The main focus of this study is the spectroscopic properties of highly charged hafnium ions. Highly charged ions of high-Z elements (Z ~ 70–83) are of great importance in atomic physics, astronomical physics and especially plasma diagnostics. Therefore, we perform level energies, transition probabilities, wavelengths, and line strengths for electric dipole, electric quadrupole, and magnetic dipole transitions in Hf LXII (Hf61+, Z = 72). All values are calculated using the AUTOSTRUCTURE atomic structure code whose relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. Valence–valence, core–valence and core–core electron correlation effects are included. The results are compared with other studies from the National Institute of Standards and Technology database. The present results are in good agreement with other studies in the literature. We hope to fill a lack of atomic data for highly charged hafnium ions, which may be useful in plasma diagnostics.

About the Author

G. G. Konan
Sakarya University
Turkey

Department of Physics, Science Faculty,

Sakarya



References

1. C. Biedermann, R. Radtke, R. Seidel, T. Pütterich, Phys. Scr., 134, 014026(1–6) (2009).

2. S. Hamasha, R. Alshaiub, Phys. Scr., 86, 065302(1–14) (2012).

3. K. Blagoev, P. Bogdanovich, N. Dimitrov, A. Momkauskaite, Phys. Rev. A, 37, 4679–4684 (1988).

4. G. G. Konan, L. Ozdemir. Chin. J. Phys., 54, 433–450 (2016).

5. G. G. Konan, L. Ozdemir, G. Urer, J. Quant. Spectrosc. Radiat. Transfer, 145, 110–120 (2014).

6. G. G. Konan, Can. J. Phys., 97, 959–965 (2019).

7. G. G. Konan, L. Özdemir, Can. J. Phys., 96, 1098–1103 (2018).

8. M. R. Gilbert, J. Ch. Sublet, Nucl. Fusion, 51, 043005(1–8) (2011).

9. A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (version 5.2), [Online]. Available: Wednesday, 03-Sep-2022, https://www.nist.gov/pml/atomic-spectra-database.

10. R. J. Hawryluk, D. J. Campbell, G. Janeschitz, P. R. Thomas, et al., Nucl. Fusion, 49, 065012(1–3) (2009).

11. W. R. Johnson, Z. W. Liu, J. Sapirstein, At. Data Nucl. Data Tables, 64, 279–300 (1996).

12. D. H. Baik, Y. G. Ohr, K. S. Kim, J. M. Lee, P. Indelicato, Y. K. Kim, At. Data Nucl. Data Tables, 47, 177–203 (1991).

13. Y. K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, Phys. Rev. A, 44, 148–166 (1991).

14. J. F. Seely, C. M. Brown, U. Feldman, J. O. Ekberg, C. J. Keane, B. J. Macgowan, D. R. Kania, W. E. Behring, At. Data Nucl. Data Tables, 47, 1–15 (1991).

15. D. H. Sampson, H. L. Zhang, C. J. Fontes, At. Data Nucl. Data Tables, 44, 209–271 (1990).

16. L. N. Ivanov, E. P. Ivanova, At. Data Nucl. Data Tables, 24, No. 2, 95–109 (1979).

17. J. D. Gillaspy, I. N. Draganic, Yu. Ralchenko, J. Reader, J. N. Tan, J. M. Pomeroy, S. M. Brewer, Phys. Rev. A, 80, 010501(1–3) (2009).

18. J. D. Gillaspy, D. Osin, Y. Ralchenko, J. Reader, S. A. Blundell, Phys. Rev. A, 87, 062503(1–10) (2013).

19. J. Sapirstein, K. T. Cheng, Phys. Rev. A, 91, 062508(1–9) (2015).

20. C. J. Fontes, H. L. Zhang, At. Data Nucl. Data Tables, 113, 293–315 (2017).

21. N. R. Badnell, Comp. Phys. Commun., 182, 1528–1535 (2011).

22. N. R. Badnell, J. Phys. B, 19, 3827–3835 (1986).

23. N. R. Badnell, J. Phys. B, 30, 1–11 (1997).


Review

For citations:


Konan G.G. Spectroscopic Properties Including Line Strengths, Wavelengths, and Transition Probabilities for Hf LXII. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):651.

Views: 89


ISSN 0514-7506 (Print)