Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural and Optical Studies on Ti-Doped ZnCdO Nanocomposites for Optoelectronic Device Application

Abstract

ZnCdO is a perfect material for ZnO-based gadgets. ZnCdO nanocomposites are mainly used in most optoelectronic and display device applications. In the present investigation, a simple solution method was used to synthesize pure ZnCdO and Ti-doped ZnCdO nanocomposites with different wt% ratios (0.1, 0.3, and 0.5%). Characterization techniques such as the structural, morphological, and elemental composition of the prepared samples were undertaken by X-ray diffraction, scanning electron microscopy (SEM), energydispersive X-ray analysis, and photoluminescence (PL). The diffraction peaks of the prepared samples revealed the cubic phase structure. SEM showed the presence of spherical chunks with irregular grains due to agglomeration. For the prepared sample of pure ZnCdO, the particle size was found to be 62.08 nm, whereas Ti-doped ZnCdO nanocomposites (0.1, 0.3, and 0.5%) were at 55.08, 50.03, and 45.08 nm. The peak observed in PL spectra at 520 nm could be ascribed to the near-band-edge emission. The photo-generated electrons have been trapped in to Ti4+ levels in the forbidden gap, which enhanced the deep-level emission.

About the Authors

M. Seshu Kumar
Department of Physics, Andhra Loyola College
India

Vijayawada



P. Jayaprada
Department of Physics, Andhra Loyola College
India

Vijayawada



R.V.S.S.N. Ravikumar
Department of Physics, Acharya Nagarjuna University
India

Nagarjuna Nagar, Guntur



M. C. Rao
Department of Physics, Andhra Loyola College
India

Vijayawada



References

1. P. H. Jefferson, S. A. Hatfield, T. D. Veal, P. D. C. King, C. F. McConnville, J. Z. Perez, V. M. Sanjose, Appl. Phys. Lett., 92, 022101 (2008).

2. R. K. Chava, M. Kang, J. Alloys Compd., 692, 67–76 (2017).

3. S. A. Bidier, M. R. Hashim, A. M. Al-Diabat, M. Bououdina, Phys. E, 88, 169–171 (2017).

4. R. Mechiakh, R. Bensaha, Cond. Mater., 7, 54–57 (2006).

5. W. Yu, T. Liu, S. Cao, C. Wang, C. Chen, J. Solid State Chem., 239, 131–138 (2016).

6. R. C. Weast, S. M. Selby, In: Chemistry and Physics in CRC, 3rd ed., Taylor and Francis (1976).

7. E. K. Abdul-Hussein, A. M. Hayder, A. I. Khudiar, J. Mater. Res. Tech., 2, No. 2, 182–187 (2013).

8. T. Ahmad, S. Khatoon, K. Coolahan, S. E. Lofland, J. Mater. Res., 28, 1245–1253 (2013).

9. Y. Su, F. Peng, Z. Jiang, Biomaterials, 32, 5855‒5862 (2011).

10. Z. Han, J. Zhang, X. Yang, W. Cao, Solar Energy Mater. Solar Cells, 95, 483‒490 (2011).

11. M. Taukeer Khan, R. Bhargav, A. Kaur, et al., Thin Solid Films, 519, No. 3, 1007‒1011 (2010).

12. S. Ashoka, G. Nagaraju, K. V. Thipperudraiah, et al., Mater. Res. Bull., 45, No. 11, 1736‒1740 (2010).

13. M. Liu, Y. Du, L. Ma, et al., Int. J. Hydrogen Energy, 37, No. 1, 730‒736 (2012).

14. X. L. Yang, J. Zhang, S.-B. Ren et al., Inorg. Chem. Commun., 13, No. 1, 1337‒1339 (2010).

15. M. H. Vijaykumar, P. A. Vaishampayan, Y. S. Shouche, T. B. Karegoudar, Enzym Microbiol. Tech., 40, No. 2, 204–211 (2007).

16. S. Balachandran, S. G. Praveen, R. Velmurugan, M. Swaminathan, RSC Adv., 4, 4353–4362 (2014).

17. T. O. Mahony, E. Guibal, J. M. Tobin, Enzym Microbiol. Tech., 31, 456–463 (2002).

18. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001).

19. D. V. Sathish, Ch. Rama Krishna, Ch. Venkata Reddy, T. Raghavendra Rao, P. S. Rao, R. V. S. S. N. Ravikumar, J. Mol. Struct., 1034, 57–61 (2013).

20. A. M. Ismail, A. A. Menazea, H. A. Kabary, A. E. El-Sherbiny, A. Samy, J. Mol. Struct., 1196, 332–327 (2019).

21. P. Shokeen, A. Jain, A. Kapoor, Opt. Mater., 67, 32–37 (2017).

22. K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd., 727, 792–820 (2017).

23. G. Li, X. Wang, Y. Wang, X. Shi, N. Yao, B. Zhang, Phys. E, 40, 2649 (2008).

24. D. V. Sathish, Ch. Rama Krishna, Ch. Venkata Reddy, U. S. Udayachandran Thampy, R. V. S. S. N. Ravikumar, Phys. Scr., 86, 035708 (2012).

25. A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R. Asahi, V. P. Dravid, C. R. Kannewurf, PNAS, 98, 7113–7116 (2001).

26. M. Yuste, R. E. Galindo, O. M. Sacristan, I. Minguez-Bacho, R. Sonia, M. Hernandez-Velez, O. Sanchez, Mater. Res. Express, 1, 045028 (2014).

27. W. Zhang, J. Zhao, Z. Liu, Z. Liu, Appl. Surf. Sci., 284, 49–52 (2013).

28. Z. R. Khan, M. Zulfequar, M. S. Khan, Mater. Sci. Eng. B, 174, 145–149 (2010).

29. P. Rajeswari, S. Dhanuskodi, Cryst. Res. Technol., 48, 589–598 (2013).

30. V. Radhika, V. Annamalai, G. Vijaya, D. Annakkodi, J. Environ. Nanotechnol., 5, No. 3, 39–43 (2016).

31. E. F. Abo Zeida, I. A. Ibrahem, A. M. Ali, W. A. A. Mohamed, Res. Phys., 12, 562–570 (2019).

32. S. Balamurugan A.R. Balu K. Usharani M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Pacific Sci. Rev. A: Nat. Sci. Eng., 18, No. 3, 228–232 (2016).

33. Kuo Tz-Jun, Michael H. Huang, J. Phys. Chem. B, 110, 13717–13721 (2006).

34. T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Proc., 30, 381–387 (2015).

35. B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater., 20, No. 7, 1161–1165 (2010).

36. S. A. Bidier, M. R. Hashim, M. Bououdina, J. Mater. Sci. Mater. Electron., 28, 11178–11185 (2017).


Review

For citations:


Seshu Kumar M., Jayaprada P., Ravikumar R., Rao M.C. Structural and Optical Studies on Ti-Doped ZnCdO Nanocomposites for Optoelectronic Device Application. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):653.

Views: 144


ISSN 0514-7506 (Print)