Research on a System Noise Simulation and Filtering Method in Tunable Diode Laser Absorption Spectroscopy Technology
Abstract
To solve the problem of multiple noise interference when tunable diode laser absorption spectroscopy (TDLAS) technology is used for gas concentration detection, the principles of Kalman, moving average, wavelet transform, and singular value decomposition four filtering algorithm principles and system noise sources are analyzed. MATLAB simulation software is used to simulate the relationship curve of thermal noise, shot noise, relative intensity noise of lasers, and the characteristic value of harmonic signals. Four filtering algorithms are used to process the noise, and the best filtering algorithm is selected. Moreover, a TDLAS experimental system with ethylene gas as the detection object is designed in this paper. The experimental results show that the singular value decomposition method among the four filtering algorithms has the best effect in removing thermal noise, shot noise and laser noise. After filtering is performed, the accuracy of the continuous detection of the system is improved, and the purpose of reducing or even eliminating system noise can be achieved. After processing occurs, the signal-to-noise ratio of the detected signal of the system is improved by 57 dB, and the noise removal rate of the system reaches 66.7%.
About the Authors
W. YanChina
Tianjin
W. Fang
China
Tianjin
Zh. Rui
China
Tianjin
Y. Bo
China
Zhangjiakou
S.-Y. Yang
China
Tianjin
X.-B. Li
China
Tianjin
References
1. G. Z. Gao, T. Zhang, G. Zhang, Opt. Express, 27, No. 13, 17887–17904 (2019).
2. G. Zhang, G. Z. Gao, T. Zhang, X. Liu, C. D. Peng, T. D. Cai, J. Quant. Spectrosc., 241, No. 34, 748 (2020).
3. J. Jiang, M. X. Zhao, G. M. Ma, IEEE Sens. J., 27, No. 99, 1 (2018).
4. Y. Krishna, S. O’Byrne, K. Munuswamy, Appl. Opt., 57, No. 17, 4943 (2018).
5. J. D. Li, P. P. Zhang, Y. J. Ding, Opt. Laser Eng., 78, No. 3-4, 503–511 (2020).
6. S. Pal, A. Das, S. Nandy, R. Kar, J. Ghosh, Rev. Sci. Instrum., 38, No. 21, 4699 (2019).
7. K. Ruxton, A. L. Chakraborty, W. Johnstone, Sensor Actuat. B, 150, No. 1, 367–375 (2010).
8. L. Li, N. Arsad, G. Stewart, Opt. Commun., 284, No. 1, 312–316 (2011).
9. J. Reid, E. L. Sherbiny, B. K. Garside, Appl. Opt. B, 19, No. 19, 3349–3353 (1980).
10. J. M. Poyet, Lutz Y. Light, Opt. Eng., 55, No. 7, 75–103 (2016).
11. L. Persson, F. Andersson, M. Andersson, Appl. Opt. B, 87, No. 3, 523–530 (2007).
12. S. Q. Wu, T. Kimishima, H. Kuze, Appl. Phys., 39, No. 7A, 4034–4040 (2000).
13. P. W. Werle, P. Mazzinghi, F. D`Amato, Spectrochim. Acta A, 60, No. 8-9, 1685–1705 (2004).
14. X. W. Zhou, H. F. Liu, Laser Part Beams., 20, No. 8, 1262–1264 (2008).
15. J. S. Li, B. L. Yu, H. Fischer. Appl. Spectrosc., 69, No. 4, 496–506 (2015).
16. D. B. Zou, W. L. Chen, Z. H. Du, Spectrosc. Spectr. Anal., 32, No. 9, 2322–2326 (2012).
17. Y. L. Huang, Y. G. Zhang, X. D. Wang, IEEE T. Instrum. Meas., 60(99), 1–14 (2017).
18. C. L. Li, Guo, X. Q. Guo, W. H. Ji, J. L. Wei, X. B. Qiu, W. G. Ma, Opt. Quant. Electron., 50, No. 7, 1539 (2018).
19. D. S. Zhang, J. Guo, Y. Jin, Opt. Eng., 56, No. 9, 1 (2017).
Review
For citations:
Yan W., Fang W., Rui Zh., Bo Y., Yang S., Li X. Research on a System Noise Simulation and Filtering Method in Tunable Diode Laser Absorption Spectroscopy Technology. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):654.