Potential of UV-Vis Spectroscopy for Determining the Mechanism of the Synergistic Antioxidant Process of Kaempferol with three Other Flavonoids and β-Carotene
Abstract
The antioxidant activities of flavonoid mixtures can be used to investigate the synergistic antioxidant mechanism of flavonoids. The antioxidant capacities of three flavonoids (quercetin, baicalein, and daidzein) and β -carotene in binary and ternary mixtures with kaempferol were analyzed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay by means of absorption spectroscopy. The results showed that the number of hydroxyl groups and o-hydroxyl groups had a significant effect on the antioxidant activity of the flavonoids, and the mixture of kaempferol, quercetin, and baicalein showed optimal synergistic antioxidant activity. Compared with quercetin and baicalein, kaempferol had the fastest inhibition rate, and multiple prolonged kinetic processes associated with the scavenging of DPPH radicals occurred in mixtures of kaempferol with the other flavonoids and β -carotene. Kaempferol has a potential synergistic antioxidant effect when mixed with daidzein and β -carotene, and the results suggested that this may be due to the regeneration of kaempferol after antioxidation. By means of classic UV-Vis spectroscopy, reaction details of the synergistic antioxidant process of DPPH radical scavenging by flavonoids can be obtained.
About the Authors
Y. ShiRussian Federation
Department of Chemistry,
Inner Mongolia Baotou
Y.-D. Guo
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
Y.-D. Mi
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
J. Cheng
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
W. Dong
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
G.-F. Zhang
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
Y. Zeng
Russian Federation
Department of Chemistry,
Inner Mongolia Baotou
References
1. G. Galati, P. J. O'Brien, Free Rad. Biol. Med., 37, 287–303 (2004).
2. Q. Wang, Y. T. Wang, S. P. Pu, Y. T. Zheng, Biochem. Biophys. Res. Commun., 324, 605–610 (2004).
3. M. Hidalgo, C. Sanchez-Moreno, S. de Pascual-Teresa, Food Chem., 121, 691–696 (2010).
4. A. S. Meyer, M. Heinonen, E. N. Frankel, Food Chem., 61, 71–75 (1998).
5. S. S. Pekkarinen, I. M. Heinonen, A. I. Hopia, J. Sci. Food Agric., 79, 499–506 (1999).
6. H. Matsufuji, R. Sasa, Y. Honma, H. Miyajima, M. Chino, T. Yamazaki, T. Shimamura, H. Ukeda, T. Matsui, K. Matsumoto, K. Yamagata, J. Jpn. Soc. Food Sci. Technol. – Nippon Shokuhin Kagaku Kogaku Kaishi, 56, 129–136 (2009).
7. M. Fattore, D. Montesano, E. Pagano, R. Teta, F. Borrelli, A. Mangoni, S. Seccia, S. Albrizio, J. Food Compos. Anal., 53, 61–68 (2016).
8. D. Skroza, I. G. Mekinic, S. Svilovic, V. Simat, V. Katalinic, J. Food Compos. Anal., 38, 13–18 (2015).
9. J. P. A. Freitas, F. R. M. Franca, M. S. Silva, R. J. Toms, G. F. da Silva, Korean J. Chem. Eng., 36, 1298–1304 (2019).
10. X. Li, Chemistry Select, 3, 13081–13086 (2018).
11. X. Li, X. Ouyang, R. Cai, D. Chen, Molecules (Basel, Switzerland), 24, 1–10 (2019).
12. E. Hvattum, Y. Stenstrom, D. Ekeberg, J. Mass Spectrom., 39, 1570–1581 (2004). 13. D. I. Tsimogiannis, V. Oreopoulou, Innov. Food Sci. Emerg. Technol., 7, 140–146 (2006).
13. N. Aftab, A. Vieira, Phytother. Res., 24, 500–502 (2010).
14. S. S. Wang, D. M. Wang, Z. H. Liu, Ind. Crop. Prod., 67, 227–238 (2015).
15. G. Mercado-Mercado, L. A. de la Rosa, E. Alvarez-Parrilla, J. Mol. Struct., 1199, 1–8 (2020).
16. R. Liang, C. H. Chen, X. C. Ai, J. P. Zhang, Chin. J. Mag. Res., 27, 132–140 (2010).
17. C. L. Tian, X. Liu, Y. Chang, R. X. Wang, T. M. Lv, C. C. Cui, M. C. Liu, S. Afr. J. Bot., 137, 257–264 (2021).
18. Y. J. Hua, X. C. Li, W. H. Zhang, B. Chen, Y. M. Liu, X. J. Zhao, H. Xie, D. F. Chen, J. Saudi Chem. Soc., 25, 1–10 (2021).
19. Q. Zhang, W. B. Yang, J. C. Liu, H. Liu, Z. Z. Lv, C. L. Zhang, D. L. Chen, Z. G. Jiao, Oxidative Med. Cell. Longev., 1–12 (2020).
20. K. L. Khanduja, A. Bhardwaj, Indian J. Biochem. Biophys., 40, 416–422 (2003).
21. K. P. Suja, A. Jayalekshmy, C. Arumughan, J. Agric. Food Chem., 52, 912–915 (2004).
22. Z. H. Gao, K. X. Huang, X. L. Yang, H. B. Xu, Biochim. Biophys. Acta-Gen. Subj., 1472, 643–650 (1999).
23. S. S. Qiu, C. C. Jiang, R. J. Zhou, C. H. Li, Chin. J. Struct. Chem., 39, 57–65 (2020).
24. A. G. Veiko, E. A. Lapshina, I. B. Zavodnik, Mol. Cell. Biochem., 476, 4287–4299 (2021).
25. M. K. Johnson, G. Loo, Mutat. Res.-DNA Repair, 459, 211–218 (2000).
26. E. A. Gonzalez, M. A. Nazareno, LWT-Food Sci. Technol., 44, 558–564 (2011).
27. J. Valerga, M. Reta, M. C. Lanari, LWT-Food Sci. Technol., 45, 28–35 (2012).
28. M. Colon, C. Nerin, Eur. Food Res. Technol., 242, 211–220 (2016).
29. D. Tsimogiannis, A. Bimpilas, V. Oreopoulou, Eur. J. Lipid Sci. Technol., 119, 1–9 (2017).
30. B. J. F. Hudson, Food Antioxidants, Elsevier Applied Science, London (1990).
31. H. Y. Zhang, Y. M. Sung, X. L. Wang, Chem.-Eur. J., 9, 502–508 (2003).
32. M. N. Peyrat-Maillard, M. E. Cuvelier, C. Berset, J. Am. Oil Chem. Soc., 80, 1007–1012 (2003).
33. L. Bateman, H. Hughes, A. L. Morris, Discuss. Faraday Soc., 14, 190–199 (1953).
34. H. J. Wang, R. Liang, L. M. Fu, R. M. Han, J. P. Zhang, L. H. Skibsted, Food Funct., 5, 1573–1578 (2014).
35. T. Zhang, S. Deng, Y. H. Chen, X. P. Du, Food and Fermentation Industries, 47, 8–15 (2021).
36. J. Liang, Y. X. Tian, F. Yang, J. P. Zhang, L. H. Skibsted, Food Chem., 115, 1437–1442 (2009).
37. R. M. Han, Y. X. Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, L. H. Skibsted, J. Agric. Food Chem., 55, 2384–2391 (2007).
38. B. Zhou, Z. Chen, Y. Chen, Z. Jia, Y. Jia, L. Zeng, L. Wu, L. Yang, Z. L. Liu, Appl. Magn. Res., 18, 397–406 (2000).
39. M. T. Schroeder, E. M. Becker, L. H. Skibsted, J. Agric. Food Chem., 54, 3445–3453 (2006).
40. L. Muller, K. Frohlich, V. Bohm, Food Chem., 129, 139–148 (2011).
41. M. C. Foti, J. Agric. Food Chem., 63, 8765–8776 (2015).
42. S. B. Kedare, R. P. Singh, J. Food Sci. Technol., 48, 412–422 (2011).
43. M. C. Foti, C. Daquino, C. Geraci, J. Org. Chem., 69, 2309–2314 (2004).
44. V. Thavasi, R. P. A. Bettens, L. P. Leong, J. Phys. Chem. A, 113, 3068–3077 (2009).
45. K. Sak, Mini-Rev. Med. Chem., 14, 494–504 (2014).
46. L. M. Magalhães, M. A. Segundo, S. Reis, J. Lima, Anal. Chim. Acta, 558, 310–318 (2006).
Review
For citations:
Shi Y., Guo Y., Mi Y., Cheng J., Dong W., Zhang G., Zeng Y. Potential of UV-Vis Spectroscopy for Determining the Mechanism of the Synergistic Antioxidant Process of Kaempferol with three Other Flavonoids and β-Carotene. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):656.