Determination of Vildagliptin Using a Simple and Sensitive Fluorescent Probe
Abstract
Vildagliptin (VLG), a drug for the treatment of type 2 diabetes, is nonfluorescent in aqueous solution. This property makes it difficult to determine by direct fluorometric methods. We proposed a new competitive method for fluorometric detection of VLG using CB[7]–BER (cucurbit[7]uril = CB[7], BER = berberine) as a fluorescent probe. The method showed a good calibration curve within the concentration range 0.00213– 1.820 mg/mL with an excellent correlation coefficient (r2 >0.999). The detection limit is 0.64 ng/mL for CB[7]–BER fluorescent probe. Moreover, the method was successfully applied for the determination of VLG in pharmaceutical tablets and artificial urine. To our knowledge, this is the first example of determining VLG using a fluorescent probe method.
About the Authors
J. JiaChina
Baicheng, Jilin
M. Liu
China
Changchun
L. Liu
China
Changchun
References
1. E. I. El-Kimary, D. A. Hamdy, S. S. Mourad, M. A. Barary, J. Chromatogr. Sci., 54, No. 1, 79–87 (2015).
2. S. Mowaka, D. Mohamed, RSC Adv., 74, No. 5, 60467–60481 (2015).
3. S. Shantikumar, N. Satheeshkumar, B. Prasanth, A. Lingesh, D. Paul, R. Srinivas, Anal. Methods, 7, No. 15, 6198–6206 (2015).
4. M. Attimarad, S. H. Nagaraja, B. E. Aldhubaib, A. Nair, Diabetes, 1, 4 (2014).
5. A. T. Barden, B. Salamon, E. E. S. Schapoval, M. Steppe, J. Chromatogr. Sci., 50, No. 5, 426–432 (2012).
6. T. Boovizhikannan, V. K. Palanirajan, J. Pharm. Res., 7, No. 1, 113–116 (2013).
7. R. Pontarolo, A. C. Gimenez, T. M. G. de Francisco, R. P. Ribeiro, F. L. D. Pontes, J. C. Gasparetto, J. Chromatogr. B, 965, 133–141 (2014).
8. A. T. Barden, B. L. Piccoli, N. M. Volpato, M. Steppe, Anal. Methods, 5, No. 20, 5701–5708 (2013).
9. M. Fadr, A. N. Amro, S. B. Aoun, Trop. J. Pharm. Res., 17, No. 9, 1847–1852 (2018).
10. M. M. Fachi, L. B. Cerqueira, L. P. Leonart, T. M. G. D. Francisco, R. Pontarolo, PloS One, 11, No. 12, e0167107 (2016).
11. S. Shantikumar, N. Satheeshkumar, B. Prasanth, A. Lingesh, D. Paul, R. Srinivas, Anal. Methods, 7, No. 15, 6198–6206 (2015).
12. A. Barden, B. Piccoli, N. Volpato, E. Schapoval, M. Steppe, Die Pharm. Int. J. Pharm. Sci., 69, No. 2, 86–91 (2014).
13. M. Fadr, A. N. Amro, S. B. Aoun, Trop. J. Pharm. Res., 17, No. 9, 1847–1852 (2018).
14. R. I. El Bagary, H. M. Azzazy, E. F. El Kady, F. Farouk, J. Liq, Chromatogr. Related Technol., 39, No. 4, 195–202 (2016).
15. O. V. D. Oliveira, G. D. C. Costa, L. T. Costa, J. Phys. Chem. B, 122, No. 50, 12107–12113 (2018).
16. S. R. Wang, J. Q. Wang, G. H. Xu, L. Wei, B. S. Fu, L. Y. Wu, Y. Y. Song, X. R. Yang, C. Li, S. M. Liu, Adv. Sci., 5, No. 7, 1800231 (2018).
17. S. Li, I. W. Wyman, C. Wang, Y. Wang, D. H. Macartney, R. Wang, J. Org. Chem., 81, No. 19, 9494–9498 (2016).
18. M. Gupta, K. Parvathi, S. Mula, D. K. Maity, A. K. Ray, Photochem. Photobiol. Sci., 16, No. 4, 499–506 (2017).
19. Z. Huang, H. Zhang, H. Bai, Y. Bai, S. Wang, X. Zhang, ACS Macro Lett., 5, No. 10, 1109–1113 (2016).
20. L. Scorsin, J. A. Roehrs, R. R. Campedelli, G. F. Caramori, A. O. Ortolan, R. L. Parreira, H. D. Fiedler, A. Acuna, L. Garcia-Rio, F. Nome, ACS Catalysis, 8, No. 12, 12067–12079 (2018).
21. M. A. Gamal-Eldin, D. H. Macartney, Org. Biomol. Chem., 11, No. 3, 488–495 (2013).
22. J. Robinson-Duggon, F. Perez-Mora, L. Valverde-Vasquez, D. Cortes-Arriagada, J. R. De la Fuente, G. Gunther, D. Fuentealba, J. Phys. Chem. C, 121, No. 39, 21782–21789 (2017).
23. P. Xu, Q. Feng, X. Yang, S. Liu, C. Xu, L. Huang, M. Chen, F. Liang, Y. Cheng, Bioconjugate Chem., 29, No. 8, 2855–2866 (2018).
24. H. S. El-Sheshtawy, S. Chatterjee, K. I. Assaf, M. N. Shinde, W. M. Nau, J. Mohanty, Sci. Rep., 8, No. 1, 1–10 (2018).
25. S. Senler, B. Cheng, A. E. Kaifer, Org. Lett., 16, No. 22, 5834–5837 (2014).
26. M. H. Tootoonchi, S. Yi, A. E. Kaifer, J. Am. Chem. Soc., 135, No. 29, 10804–10809 (2013).
27. G. Villarroel-Lecourt, J. Carrasco-Carvajal, F. Andrade-Villalobos, F. Solis-Egana, I. Merino-San Martín, J. Robinson-Duggon, D. Fuentealba, ACS Omega, 3, No. 7, 8337–8343 (2018).
28. Y. Li, C.-F. Li, L.-M. Du, J.-X. Feng, H.-L. Liu, Y.-L. Fu, Talanta, 132, 653–657 (2015).
29. H. Bai, H. Chen, R. Hu, M. Li, F. Lv, L. Liu, S. Wang, ACS Appl. Mater. Interfaces, 8, No. 46, 31550–31557 (2016).
30. C. Kim, S. S. Agasti, Z. Zhu, L. Isaacs, V. M. Rotello, Nature Chem., 2, No. 11, 962–966 (2010).
31. A. Palma, M. Artelsmair, G. Wu, X. Lu, S. J. Barrow, N. Uddin, E. Rosta, E. Masson, O. A. Scherman, Angew. Chemie, 129, No. 49, 15894–15898 (2017).
32. Q. Li, Y. Wu, H. Lu, X. Wu, S. Chen, N. Song, Y.-W. Yang, H. Gao, ACS Appl. Mater. Interfaces, 9, No. 11, 10180–10189 (2017).
33. S. Fu, S. Ni, D. Wang, M. Fu, T. Hong, Int. Immunopharm., 71, 1–6 (2019).
34. G.-Q. Wang, L. Guo, L.-M. Du, Y.-L. Fu, Microchem. J., 110, 285–291 (2013).
35. M. Al Bratty, H. A. Alhazmi, S. A. Javed, K. G. Lalitha, M. Asmari, J. Wölker, S. El Deeb, Chromatographia, 80, No. 6, 891–899 (2017).
36. E. Uçaktürk, J. Anal. Methods in Chem. (2015).
37. A. T. Barden, B. L. Piccoli, N. M. Volpato, M. Steppe, Anal. Methods, 5, No. 20, 5701–5708 (2013).
38. A. Kashid, D. Ghorpade, P. Toranmal, S. Dhawale, J. Anal. Chem., 70, No. 4, 510–515 (2015).
39. J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc., 122, No. 3, 540–541 (2000).
40. M. Megyesi, L. Biczók, I. Jablonkai, J. Phys. Chem. C, 112, No. 9, 3410–3416 (2008).
41. C. Li, J. Feng, H. Ju, Analyst, 140, No. 1, 230–235 (2015).
42. L. Shi, J.-H. Xie, L.-M. Du, Y.-X. Chang, H. Wu, Spectrochim. Acta A: Mol. Biomol. Spectr., 162, 98–104 (2016).
Review
For citations:
Jia J., Liu M., Liu L. Determination of Vildagliptin Using a Simple and Sensitive Fluorescent Probe. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):657.