Forecast of Oil Content in Oilfield Wastewater by PLS and CNN Based on UV Transmittance Spectrum and Turbidity
Abstract
Oil content plays an important role in oilfield wastewater treatment. To investigate the forecast of oil content by UV spectrophotometry, samples of oilfield wastewater are collected, and their UV transmittance and turbidity are measured. Partial least squares (PLS) and convolutional neural networks (CNN) based on a dataset of UV transmittance spectra are used for quantitative analysis in this work. The correlation coefficient between the oil content and turbidity of oilfield wastewater is 0.924, which shows a high positive linear correlation between the oil content and turbidity. Turbidity is added to the dataset to investigate its influence on the accuracy of prediction. The results show that the accuracy of models built by transmittance and turbidity is higher than that of models built by transmittance only, which is confirmed for both PLS and CNN. With the same dataset composition, the PLS and CNN models are nearly accurate, but the CNN performs slightly better overall. This work laid the foundation for the prediction of oil content in oilfield wastewater based on UV spectrophotometry and the further implementation of online detection.
Keywords
About the Authors
Q. WangChina
Daqing
H. Li
China
Daqing
H Qi
China
Daqing
H. Zhao
China
Daqing
H. Li
China
Daqing
X. Zhang
China
Daqing
References
1. F. Al Jabri, L. Muruganandam, D. A. Aljuboury, Global NEST J., 21, No. 2, 204–210 (2019).
2. Xu Shirong, Duan Ming, Zhang Jian, Chem. Eng. Oil and Gas, 38, No. 3, 258–261 (2009).
3. C. Y. Wang, H. H. Jiang, J. W. Gao, J. L. Zhang, R. E. Zheng, Spectrosc. Spectr. Anal., 26, No. 6, 1080–1083 (2006).
4. Yang Haiya, Wu Liangzhuan, Yu Yuan, Zhi Jinfang, Chin. J. Spectrosc. Lab., 28, No. 6, 2770–2773 (2011).
5. P. D. Wentzell, D. T. Andrews, J. M. Walsh, J. M. Cooley, et al., Can. J. Chem., 77, No. 3, 391–400 (1999).
6. X. Bian, S. Li, L. Lin, X. Tan, Q. Fan, M. Li, Anal. Chim. Acta, 925, 16–22 (2016), doi: 10.1016/j.aca.2016.04.029.
7. Xiaojun Tang, Angxin Tong, Feng Zhang, Bin Wang, Sains Malaysiana, 49, No. 8, 1773–1785 (2020).
8. P. Li, J. Qu, Y.He, Z. Bo, M. Pei, RSC Adv., 10, No. 35, 20691–20700 (2020), doi: 10.1039/c9ra10732k.
9. W. S. Jia, H. Z. Zhang, J. Ma, G. Liang, J. H. Wang, X. Liu, Spectrosc. Spectr. Anal., 40, No. 9, 2981–2988 (2020).
10. X. W. Chen, G. F. Yin, N. J. Zhao, T. T. Gan, R. F. Yang, W. Zhu, J. G. Liu, W. Q. Liu, Spectrosc. Spectr. Anal., 39, No. 9, 2912–2916 (2019).
11. Wu Decao, Wei Biao, Tang Ge, Feng Peng, Tang Yuan, Liu Juan, Xiong Shuangfei, Acta Opt. Sin., 37, No. 2, 0230007 (2017).
12. Y. Hu, X. Wang, Sensors and Actuators B: Chem., 239, 718–726 (2017), doi: 10.1016/j.snb.2016.08.072.
13. E. Carré, J. Pérot, V. Jauzein, L. Lin, M. Lopez-Ferber, Water Sci. Technol., 76, No. 3, 633–641 (2017), doi: 10.2166/wst.2017.096.
14. B. Chen, H. Wu, S. F. Y. Li, Talanta, 120, 325–330 (2014), doi: 10.1016/j.talanta.2013.12.0.
15. X. Liu, L. Wang, Water Sci. Technol., 71, No. 10, 1444–1450 (2015), doi: 10.2166/wst.2015.110.
16. J. C. Cancilla, R. Aroca-Santos, K. Wierzchoś, J. S. Torrecilla, Chemom. Intell. Lab. Systems, 156, 102–107 (2016), doi: 10.1016/j.chemolab.2016.05.
17. Y. Chen, L. Song, Y. Liu, L. Yang, D. Li, Appl. Sci., 10, No. 17, 5776 (2020), doi: 10.3390/app10175776.
18. G. Puertas, M. Vázquez, J. Food Comp. Anal., 86, 103350 (2020), doi: 10.1016/j.jfca.2019.10335.
19. B. Wei, K. Hao, X. Tang, Y. Ding, Textile Res. J., 004051751881365 (2018), doi: 10.1177/0040517518813656.
20. L. Norgaard, A. Saudland, J. Wagner, et al., Appl. Spectrosc., 54, No. 3, 413–419 (2000).
21. F. Al Jabri, L. Muruganandamand, D. A. Aljuboury, Global NEST J., 21, No. 2, 204–210 (2019).
Review
For citations:
Wang Q., Li H., Qi H., Zhao H., Li H., Zhang X. Forecast of Oil Content in Oilfield Wastewater by PLS and CNN Based on UV Transmittance Spectrum and Turbidity. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):661.