Precise Wavelengths of 4p(2P1/2)→nd 2D3/2 and 4p(2P3/2)→nd 2D3/2,5/2 Rydberg Transitions in Neutral Potassium Calculated via the Screening Constant Per Unit Nuclear Charge Method
Abstract
Photoionization of neutral potassium K I is investigated in the framework of the screening constant per unit nuclear charge (SCUNC) method. Transition energies and wavelengths belonging to 4p(2P1/2)→nd 2D3/2 and 4p(2P3/2)→nd 2D3/2,5/2 Rydberg transitions are reported. Accurate transition energies and wavelengths originating from 4p(2P1/2,3/2) levels of K I are tabulated for 20 ≤ n ≤ 100. The SCUNC wavelengths are believed to be the first calculations that agree excellently with the existing experimental measurements up to n = 70 using linearly polarized laser light. The maximum shift in wavelengths relative to the experimental data is at 0.03 nm up to n = 70. New wavelengths are tabulated for n = 71–100 along with new transition energies for n = 20–100.
About the Author
I. SakhoSenegal
Thiès
References
1. I. M. Savukov, Phys. Rev. A, 76, 032710 (2007), https://doi.org/10.1103/PhysRevA.76.032710.
2. O. Zatsarinny, S. S. Tayal, Phys. Rev. A, 81, 043423 (2010), https://doi.org/10.1103/PhysRevA.81.043423.
3. N. Amin, S. Mahmood, S. U. Haq, M. A. Kalyar, M. Rafiq, M. A. Bai, J. Quant. Spectrosc. Radiat. Transf., 109, 863 (2008), https://doi:10.1016/j.jqsrt.2007.09.008.
4. A. Yar, R. Ali, M. A. Baig, Phys. Rev. A, 87, 045401 (2013), https://doi.org/10.1103/PhysRevA. 87.045401.
5. A. Yar, R. Ali, M. A. Baig, Phys. Rev. A, 88, 033405 (2013), https://doi.org/10.1103/PhysRevA. 88.033405.
6. M. A. Kalyar, A. Yar, J. Iqbal, R. Ali, M. A. Baig, Opt. & Laser Technol., 77, 72 (2016), http://dx.doi.org/10.1016/j.optlastec.2015.09.001.
7. S. Noll, J. M. C. Plane, W. Feng, B. Proxauf, S. Kimeswenger, W. Kausch, JGR: Atmosphere, 124, 6612–6629 (2019), https://doi.org/10.1029/2018JD030044.
8. E. Keles, M. Mallonn, C. V. Essen, T. A. Carroll, X. Alexoudi, L. Pino, I. Ilyin, K. Poppenhäger, D. Kitzmann, V. Nascimbeni, D. Jake, J. D. Turner, K. G. Strassmeier, Monthly Notice. Royal Astronom. Soc.: Lett., 489, L37–L41 (2019), https://doi:10.1093/mnrasl/slz123.
9. N. F. Allard, F. Spiegelman, T. Leininger, P. Molliere, Astronom. Astrophys., 628, A120 (2019), https://doi.org/10.1051/0004-6361/201935593.
10. M. E. Weller, P. Beiersdorfer, T. ELockard, G. V. Brown, A. McKelvey, J. Nilsen, R. Shepherd, V. A. Soukhanovskii, M. P. Hill , L. M. R. Hobbs, D. Burridge, D. J. Hoarty, J. Morton, L. Wilson, S. J. Rose, P. Hatfield, Astrophysical J., 881, 92(1–4) (2019), https://doi.org/10.3847/1538-4357/ab2dff.
11. A. Singor, D. Fursa, I. Bray, R. McEachran, Atoms, 9, 42 (2021), https://doi.org/10.3390/atoms9030042.
12. M. D. Ba, A. Diallo, J. K. Badiane, M. T. Gning, M. Sow, I. Sakho, Rad. Phys. Chem., 153, 111 (2018), https://doi.org/10.1016/j.radphyschem.2018.09.010.
13. J. K. Badiane, A. Diallo, M. D. Ba, M. T. Gning, M. Sow, I. Sakho, Rad. Phys. Chem., 158, 17 (2019), https://doi.org/10.1016/j.radphyschem.2019.01.008.
14. I. Sakho, J. Electron. Spectrosc. Rel. Phenom., 222, 40 (2018), https://doi.org/10.1016/j.elspec.2017.09.011.
15. M. T. Gning, I. Sakho, J. At. Mol. Cond. Nano Phys., 6, 131 (2019), https://doi.org/10.26713/jamcnp.v6i3.1302.
16. I. Sakho, J. At. Mol. Cond. Nano Phys., 6, 69 (2019), https://doi.org/10.26713/jamcnp.v6i2.1268.
17. I. Sakho, JMP, 11, 487 (2020), https://doi.org/10.4236/jmp.2020.114031.
18. I. Sakho, J. At. Mol. Cond. Nano Phys., 8, 15 (2021), https://doi.org/10.26713/jamcnp.v8i1.1323.
19. I. Sakho, Int. J. Mass Spectrom., 474, 116800 (2022), https://doi.org/10.1016/j.ijms.2022.116800.
20. I. Sakho, Physique Atomique, Systèmes Hydrogènoïdes et Systèmes Héliumoïdes, Cours & Exercices corrigés, Editions Ellipses, Paris (2020).
Review
For citations:
Sakho I. Precise Wavelengths of 4p(2P1/2)→nd 2D3/2 and 4p(2P3/2)→nd 2D3/2,5/2 Rydberg Transitions in Neutral Potassium Calculated via the Screening Constant Per Unit Nuclear Charge Method. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):664.