Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Two-Zone Model of Laser-Induced Plasma

Abstract

A plasma modeling algorithm using a two-zone light source approximation has been developed and coupled with the NLopt library for multiparametric optimization. An abstraction layer was created to streamline the initialization of both libraries in a single step, to calculate a loss function of the specified type, and to convey its value to the optimization algorithm. The proper functioning of these combined algorithms was confirmed with model data, demonstrating convergence to the plasma parameters that were used to generate a test synthetic spectrum. The CRS2-LM algorithm enables the fastest convergence to the original spectrum; hence, it has been utilized for the approximation of experimental spectra. It has been demonstrated that the application of a two-zone model provides an accurate description of both ionic and atomic lines, including those that are self-reversed during the evaporation of aluminum alloys. Furthermore, “blind” optimization methods for the loss function are effective for determining temperature and electron density in laser-induced plasma from its spectra.

About the Authors

S. M. Zaytsev
Lomonosov Moscow State University
Russian Federation

Moscow



I. N. Krylov
Lomonosov Moscow State University
Russian Federation

Moscow



A. M. Popov
Lomonosov Moscow State University
Russian Federation

Moscow



T. A. Labutin
Lomonosov Moscow State University
Russian Federation

Moscow



References

1. C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, D. Guillaume. Spectrochim. Acta B, 66 (2011) 280—289

2. A. Cousin, V. Sautter, C. Fabre, G. Dromart, G. Montagnac, C. Drouet, P.Y. Meslin, O. Gasnault, O. Beyssac, S. Bernard, E. Cloutis, O. Forni, P. Beck, T. Fouchet, J. R. Johnson, J. Lasue, A. M. Ollila, P. De Parseval, S. Gouy, B. Caron, J. M. Madariaga, G. Arana, M. Bo Madsen, J. Laserna, J. Moros, J. A. Manrique, G. Lopez-Reyes, F. Rull, S. Maurice, R. C. Wiens. Spectrochim. Acta B, 188 (2022) 106341

3. B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, K. Ohki. Deep-Sea Res. I, 95 (2015) 20—36

4. R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, V. Sturm. J. Anal. At. Spectrom., 33 (2018) 945—956

5. K. Leosson, S. K. Padamata, R. Meirbekova, G. Saevarsdottir, S. H. Gudmundsson. Spectrochim. Acta B, 190 (2022) 106387

6. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi. Spectrochim. Acta B, 65 (2010) 1—14

7. S. Merk, A. Demidov, D. Shelby, I. Gornushkin. Appl. Spectrosc., 67 (2013) 851—859

8. S. Eschlböck-Fuchs, A. Demidov, I. B. Gornushkin, T. Schmid, R. Rössler, N. Huber, U. Panne, J. D. Pedarnig. Spectrochim. Acta B, 123 (2016) 59—67

9. S. V. Shabanov, I. B. Gornushkin. Spectrochim. Acta B, 100 (2014) 147—172

10. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, I. Gornushkin. Spectrochim. Acta B, 62 (2007) 1287—1302

11. P. Yaroshchyk, D. Body, R. J. S. Morrison, B. L. Chadwick. Spectrochim. Acta B, 61 (2006) 200—209

12. K. K. Herrera, E. Tognoni, I. B. Gornushkin, N. Omenetto, B. W. Smith, J. D. Winefordner. J. Anal. At. Spectrom., 24 (2009) 426—438

13. S. M. Zaytsev, A. M. Popov, T. A. Labutin. Spectrochim. Acta B, 158 (2019) 105632

14. J. Hermann, A. Lorusso, A. Perrone, F. Strafella, C. Dutouquet, B. Torralba. Phys. Rev. E, 92 (2015) 053103

15. P. B. Hansen, S. Schröder, S. Kubitza, K. Rammelkamp, D. S. Vogt, H.-W. Hübers. Spectrochim. Acta B, 178 (2021) 106115

16. J. Richter. In: Plasma Diagnostics, Ch. 1, Ed. W. Lochte-Holtgreven, New-York, AIP Press (1995)

17. H. R. Griem. Principles of Plasma Spectroscopy, Cambridge University Press (1997)

18. S. G. Johnson. The NLopt Nonlinear-Optimization Package эл. ресурс., http://ab-initio.mit.edu/nlopt

19. D. R. Jones, C. D. Perttunen, B. E. Stuckman. J. Optim. Theor. Appl., 79 (1993) 157—181

20. W. L. Price. J. Optim. Theor. Appl., 40 (1983) 333—348

21. P. Kaelo, M. M. Ali. J. Optim. Theor. Appl., 130 (2006) 253—264

22. A. Kramida, Yu. Ralchenko, J. Reader. NIST Atomic Spectra Database, ver. 5.10 Online., https://physics.nist.gov/asd 2023, May 22]. National Institute of Standards and Technology, Gaithersburg, MD (2023), doi: 10.18434/T4W30F

23. R. Fantoni, S. Almaviva, L. Caneve, F. Colao, A. M. Popov, G. Maddaluno. Spectrochim. Acta B, 87 (2013) 153—160


Review

For citations:


Zaytsev S.M., Krylov I.N., Popov A.M., Labutin T.A. Two-Zone Model of Laser-Induced Plasma. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):819-826. (In Russ.)

Views: 149


ISSN 0514-7506 (Print)