Use of Ultra-Fine Structure of the Optically Detected Magnetic Resonance Spectrum of a Single NV-Defect in a Diamond in Quantum Sensorics of Weak Magnetic Fields
Abstract
The possibility of using NV-defects in a diamond at room temperature on nanometer spatial scales to measure the magnetic field has been studied. For these purposes, samples with a high concentration of NV-centers are usually used, which increases the signal level but prevents the measurement of an inhomogeneous field in the scale of molecules or nanostructures. The parameters of a weak magnetic field have been measured taking into account the Earth’s field by measuring the ultrafine structure of the optically detected magnetic resonance spectrum to calibrate and determine the resolution of a magnetic field sensor on a single NV-defect.
About the Authors
N. S. KukinRussian Federation
Serpukhov, Moscow region, Moscow
A. R. Muradova
Russian Federation
Serpukhov, Moscow region, Moscow
A. K. Nikitin
Russian Federation
Serpukhov, Moscow region, Moscow
A. A. Buhtijarov
Russian Federation
Serpukhov, Moscow region
A. P. Nizovtsev
Russian Federation
Moscow, Minsk
P. A. Semenov
Russian Federation
Moscow
A. N. Vasiliev
Russian Federation
Moscow
N. I. Kargin
Russian Federation
Moscow
M. O. Smirnova
Russian Federation
Moscow
References
1. M. W. Dale, G. W. Morley. arXiv preprint arXiv:1705.01994 (2017)
2. F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, J. Du. Science, 347, N 6226 (2015) 1135—1138
3. H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications, Springer Dordrecht (2012) 179—235
4. J. Kitching, E. A. Donley. IEEE Sens. J., 11, N 9 (2011) 1749—1758
5. T. Tierney, N. Holmes, S. Mellor, J. D. López, G. Roberts, R. M. Hill, E. Boto, J. Leggett, V. Shah, M. J. Brookes, R. Bowtell, G. R. Barnes. NeuroImage, 199 (2019) 598—608
6. D. Drung, C. Abmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, Th. Schurig. IEEE Transact. Appl. Supercond., 17, N 2 (2007) 699—704
7. Y. Kim, I. Savukov. Sci. Rep., 6, N 1 (2016) 24773
8. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup. Nature, 455, N 7213 (2008) 648—651
9. А. П. Низовцев, С. Я. Килин, F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup. Опт. и спектр., 94, № 6 (2003) 910—920
10. А. П. Низовцев, С. Я. Килин, F. Jelezko, T. Gaebal, I. Popa, A. Gruber, J. Wrachtrup. Опт. и спектр., 99, № 2 (2005) 248—260
11. J. Wrachtrup, F. Jelezko. J. Phys.: Cond. Matter, 18, N 21 (2006) 807
12. J. L. Webb, J. D. Clement, L. Troise, S. Ahmadi, G. J. Johansen, A. Huck, U. L. Andersen. Appl. Phys. Lett., 114, N 23 (2019) 231103
13. I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, S. Ya. Kilin, K. Sakoda, A. M. Zheltikov. Appl. Phys. Lett., 104 (2014) 083702
14. S. M. Blakley, I. V. Fedotov, S. Ya. Kilin, A. M. Zheltikov. Opt. Lett., 40, N 16 (2015) 3727—3730
15. S. M. Blakley, I. V. Fedotov, L. V. Amitonova, E. E. Serebryannikov, H. Perez, S. Ya. Kilin, A. M. Zheltikov. Opt. Lett., 41, N 9 (2016) 2057—2060
16. Н. С. Кукин, А. Р. Мурадова, А. К. Никитин, А. А. Бухтияров, П. А. Семенов, А. Н. Васильев, Н. И. Каргин, М. О. Смирнова, С. А. Терентьев, С. А. Тарелкин, Н. В. Корнилов. ЖЭТФ, 164, № 6 (2023) 1—10
17. J. H. N. Loubser, J. A. van Wyk. Rep. Progress Phys., 41, N 8 (1978) 1201—1248
18. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, R. Hanson. Nature, 477, N 7366 (2011) 574—578
Review
For citations:
Kukin N.S., Muradova A.R., Nikitin A.K., Buhtijarov A.A., Nizovtsev A.P., Semenov P.A., Vasiliev A.N., Kargin N.I., Smirnova M.O. Use of Ultra-Fine Structure of the Optically Detected Magnetic Resonance Spectrum of a Single NV-Defect in a Diamond in Quantum Sensorics of Weak Magnetic Fields. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):850-855. (In Russ.)