Spectral-Charge Properties of a Titanium Dioxide/Silicon Heterostructure under Sunlight
Abstract
The spectral-charge properties of the heterostructure of a 100-nm-thick n-type titanium dioxide (TiO2) film on a p-type silicon substrate in the solar radiation wavelength range of 300–1200 nm studied by computer simulation. The presence of trap states in the TiO2 film, which contribute to the localization of charge carriers, is taken into account. The simulation has been carried out using the Anderson model for semiconductor heterojunctions, the solution of the Poisson equation, the continuity equations for electrons and holes, and the Maxwell equations for electromagnetic waves in the Comsol Multyphysics software package. We have calculated the distribution of the generation rates and concentration of charge carriers in the heterostructure, the distribution of charge density and electric potential on the wavelength l of solar radiation incident on the TiO2 film, and also on the energy of trap states Et, which has been set inside the band gap, counting from the bottom of the conduction band. The integral density of solar radiation 1 kW/m2 is assumed to be the same for all wavelengths. Nonmonotonic dependences of the generation rate of charge carriers in TiO2 in the wavelength range l = 325–375 nm are revealed. It has been established that for relatively shallow traps (Et = 0.2–0.3 eV) a positive charge with the density of 1.6 mC/cm3 is formed in the volume of a TiO2 film, which weakly depends on the radiation wavelength l. As the trap energy increases, the volume charge density in the TiO2 film decreases and changes sign, reaching –3.4 mC/cm3 at Et = 0.8 eV and l = 900 nm. The surface charge density on the titanium dioxide film is negative, its value increases with increasing the trap energy Et and the radiation wavelength l, reaching –2.8 × 10–4 μC/cm2 at Et = 0.8 eV and l = 900 nm. We explain the results obtained by the interrelation between the interference processes in TiO2 of the incident and reflected waves from the interface, the separation of charge carriers generated by sunlight at this interface, and also by the localization of electrons on the surface states of TiO2.
Keywords
About the Authors
H. A. KuraptsovaBelarus
Minsk
A. L. Danilyuk
Belarus
Minsk
References
1. Emissions Gap Report 2019. United Nations Environment Programme, Nairobi, UNEP (2019).
2. V. M. Ievlev, S. B. Kushchev, A. N. Latyshev, L. Yu. Leonova, O.V. Ovchinnikov, M. S. Smirnov, E. V. Popova, A. V. Kostjuchenko, S. A. Soldatenko. Semiconductors, 48, N 7 (2014) 875—884.
3. R. Hela, L. Bodnarova. Construction Mater., 722, N 2 (2015) 77—81.
4. O. Ola, M. M. Maroto-Valer. J. Photochem. Photobiology C: Photochem. Rev., 24 (2015) 16—42
5. L. M. Ahmed, I. Ivanova, F. H. Hussein, D. W. Bahnemann. Int. J. Photoenergy, 3 (2014) 1—9
6. O. S. Smirnova, A. G. Grebenyuk, V. V. Lobanov. Surface, 9, N 24 (2017) 44—56
7. V. V. Novopashin, L. A. Skvortsov, M. I. Skvortsova. J. Opt. Tech., 85, N 12 (2018) 77—82
8. S. A. Gorbachev, I. I. Osovskaja. Titanium dioxide. Increasing its Photocatalytic Activity: Textbook, Sankt-Petersburg, HSTE SPbSUITD (2019).
9. Sh. Fukuzumi. Biochim. Biophys. Acta (BBA) – Bioenergetics, 1857, N 5 (2016) 604—611
10. M. Ijaz, M. Zafar. Int. J. Energy Res., 45, N 3 (2020) 1—21
11. M. Bowker, C. O’Rourke, A. Mills. Top. Current Chem., 380, N 17 (2022) 1—30
12. B. I. Beljaev, M. Yu. Beljaev, L. V. Desinov, A. A. Kazak, L. V. Katkovsky, A. V. Rogovets. J. Appl. Spectr., 79, N 4 (2012) 669—675.
13. A. Watanabe, G. Qin. Appl. Phys. A, 116 (2014) 1281—1285
14. H. K. Kaplan, A. Olkun, S. K. Akay. Opt. Quantum Electron., 53, N 248 (2021) 1—16
15. Arvind Kumar, K. K. Sharma, Subhash Chand, Ashwani Kumar. Superlattices and Microstructures, 122 (2018) 304—315
16. J. Arun, S. Nachiappan, G. Rangarajan, R. P. Alagappan, K. P. Gopinath, E. Lichtfouse. Environ. Chem. Lett., 21 (2023) 339—362
17. Q. Guo, C. Zhou, Z. Ma, X. Yang. Adv. Mater., 31, N 50 (2019) 1901997
18. A. C Papageorgiou, N. S. Beglitis, Ch. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, G. Thornton. Proc. Nat. Acad. Sci., 107, N 6 (2010) 2391—2396
19. N. A. Poklonskij, N. I. Gorbachuk, A. I. Sjaglo, S. V. Shpakovskij. Investigation of Transient Processes in Semiconductor Structures, Minsk, BSU (2009) 18—21.
20. IEC International Standard 60904-3 Ed. 2: “Photovoltaic Devices, pt. 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data”, Geneva (2008)
21. S. M. Sze, K. Ng. Kwok. Physics of Semiconductor Devices, Hoboken, John Wiley & Sons (2006)
22. J. Zhang, P. Zhou, J. Liub, J. Yu. Phys. Chem. Chem. Phys., 4 (2014) 20382—20386
23. M. A. Green. Solar Energy Mater. Solar Cells, 92 (2008) 1305—1310
24. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, T. A. F. König. ACS Appl. Mater. Interfaces, 11 (2019) 13752—13760
25. V. Kavaliunas, Y. Hatanaka, Y. Neo, G. Laukaitis, H. Mimura. ECS J. Solid State Sci. Tech., 10 (2021) 015005
Review
For citations:
Kuraptsova H.A., Danilyuk A.L. Spectral-Charge Properties of a Titanium Dioxide/Silicon Heterostructure under Sunlight. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):856-862. (In Russ.)