Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Lattice Model of Non-Phonon Donor-Acceptor Photoluminescence in Germanium Crystals

Abstract

A formula is proposed for calculating the spectral position of the peak of non-phonon line (zero phonon line, ZPL) of donor-acceptor (DA) photoluminescence in p- and n-type covalent semiconductors with hydrogen-like impurities at low temperatures and low levels of stationary interband photoexcitation. The model uses a non-stoichiometric simple cubic impurity lattice formed jointly by doping (majority) and compensating (minority) impurity atoms in the crystal matrix. It is assumed that the distribution densities of energy levels of donors forming D0-band and energy levels of acceptors forming A0-band in the band gap of the crystal are Gaussian with equal root-mean-square fluctuations of the ionization energy. It is considered that the act of non-phonon radiative DA-recombination occurs only between nearest neighbors in the impurity lattice: upon a nonequilibrium electron transition from the energy level of the first excited state of donor to the acceptor energy level in the A0-band, which coincides with the Fermi level in this band in a p-type semiconductors or upon a nonequilibrium hole transition from the energy level of the first excited state of acceptor to the donor energy level in the D0-band, which coincides with the Fermi level in this band in an n-type semiconductors. The results of calculating the dependence of the maximum of DA-photoluminescence nonphonon line on the concentration and degree of compensation of majority impurities by minority impurities are consistent with the known experimental data for neutron-transmutation doped germanium crystals.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Minsk



I. I. Anikeev
Belarusian State University
Belarus

Minsk



S. A. Vyrko
Belarusian State University
Belarus

Minsk



References

1. M. Tajima, H. Toyota, A. Ogura. Jpn. J. Appl. Phys., 61, N 8 (2022) 080101

2. A. P. Levanyuk, V. V. Osipov. Sov. Phys. Usp., 24, N 3 (1981) 187—215]

3. S. Nakamura, Т. Mukai, M. Senoh. Jpn. J. Appl. Phys., 30, N 12A (1991) L1998—L2001

4. U. Kaiser, A. N. Gruzintsev, I. I. Rhodos, W. Richter. Inorg. Mater., 36, N 6 (2000) 595—598]

5. V. Yu. Nekrasov, L. V. Belyakov, O. M. Sreseli, N. N. Zinov’ev. Semiconductors, 33, N 12 (1999) 1284—1290

6. V. P. Dobrego, I. S. Shlimak. Sov. Phys. Semicond., 1, N 10 (1968) 1231—1236

7. F. Williams. Phys. Status Solidi, 25, N 2 (1968) 493—512

8. L. E. Stys, M. G. Foigel’. Sov. Phys. Semicond., 19, N 2 (1985) 135—142]

9. J. J. Hopfield, D. G. Thomas, M. Gershenzon. Phys. Rev., 10, N 5 (1963) 162—164

10. E. F. Gross, D. S. Nedzvetskii. Sov. Phys. Dokl., 8, N 9 (1964) 896—900]

11. N. A. Poklonskii, S. A. Vyrko. J. Appl. Spectr., 69, N 3, (2002) 434—443]

12. A. G. Zabrodskii, M. V. Alekseenko. Proc. 23rd Int. Conf. on the Physics of Semiconductors, Berlin, Germany, 21—26 July 1996, V. 4, Singapore, World Scientific (1996) 2681—2684

13. K. M. Itoh, E. E. Haller, J. W. Beeman, W. L. Hansen, J. Emes, L. A. Reichertz, E. Kreysa, T. Shutt, A. Cummings, W. Stockwell, B. Sadoulet, J. Muto, J. W. Farmer, V. I. Ozhogin. Phys. Rev. Lett., 77, N 19 (1996) 4058—4061

14. I. S. Shlimak. Phys. Solid State, 41, N 5 (1999) 716—719

15. N. A. Poklonski, S. A. Vyrko, I. I. Anikeev, A. G. Zabrodskii. Semiconductors, 56, N 11 (2022) 823—830

16. N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, A. G. Zabrodskii. J. Appl. Phys., 110, N 12 (2011) 123702

17. N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, A. G. Zabrodskii. Semiconductors, 50, N 6 (2016) 722—734

18. T. G. Castner, N. K. Lee, H. S. Tan, L. Moberly, O. Symko. J. Low Temp. Phys., 38, N 3-4 (1980) 447—473

19. N. A. Poklonski, S. A. Vyrko, A. I. Kovalev, A. N. Dzeraviaha. J. Phys. Commun., 2, N 1 (2018) 015013

20. K. Seeger. Semiconductor Physics. An Introduction, Berlin, Springer (2004)

21. N. A. Poklonskii, S. A. Vyrko, A. G. Zabrodskii, S. V. Egorov. Phys. Solid State, 45, N 11 (2003) 2053—2059

22. N. A. Poklonski, S. Yu. Lopatin. Phys. Solid State, 43, N 12 (2001) 2219—2228]

23. C. Hamaguchi. Basic Semiconductor Physics, Cham, Springer (2023)

24. V. P. Gribkovskii, V. K. Kononenko. J. Appl. Spectr., 12, N 1 (1970) 39—48]

25. E. O. Kane. Solid-State Electron. 28, N 1-2 (1985) 3—10

26. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii. Solid State Commun., 149, N 31-32 (2009) 1248—1253

27. N. L. Lavrik, V. P. Voloshin. J. Chem. Phys., 114, N 21 (2001) 9489—9491

28. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii. Semicond. Sci. Technol., 25, N 8 (2010) 085006

29. J. S. Blakemore. Semiconductor Statistics, New York, Dover (2002)

30. J. Shah, R. C. C. Leite, J. P. Gordon. Phys. Rev., 176, N 3 (1968) 938—942

31. Ya. E. Pokrovskii, O. I. Smirnova, A. Khvalkovskii. J. Exp. Theor. Phys. 85, N 1 (1997) 121—129]

32. A. M. Mathai, H. J. Haubold. Probability and Statistics: А Course for Physicists and Engineers, Berlin, De Gruyter (2018)

33. P. Whittle. Probability via Expectation, New York, Springer (2000)

34. O. Madelung. Semiconductors: Data Handbook, Berlin, Springer (2004)

35. V. P. Dobrego, I. S. Shlimak. Phys. Status Solidi, 33, N 2 (1969) 805—809

36. R. Rentzsch, I. S. Shlimak. Phys. Status Solidi A, 43, N 1 (1977) 231—238

37. I. Shlimak. Is Hopping a Science? Selected Topics of Hopping Conductivity, Singapore, World Scientific (2015)

38. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii. Phys. Solid State, 46, N 6 (2004) 1101—1106

39. L. V. Berman, A. I. Seliverstov. Sov. Phys. Semicond., 23, N 11 (1989) 1213—1216


Review

For citations:


Poklonski N.A., Anikeev I.I., Vyrko S.A. Lattice Model of Non-Phonon Donor-Acceptor Photoluminescence in Germanium Crystals. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):676-683. (In Russ.)

Views: 91


ISSN 0514-7506 (Print)