Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Line Verification in the Luminescence Spectra of Fluorophosphate Glass Doped with Yterbium and Thulium Ions by the Power of Nonlinearity of Up-Conversion Processes

Abstract

We have investigated up-conversion luminescence spectra of fluorophosphate glasses doped with rareearth ions Yb3+ with concentrations from 4 to 10% and Tm3+ with concentrations from 10–5 to 3% CW excited at 975 nm. Observed features of the spectra are the result of several up-conversion processes. Each process corresponds to a different Tm3+ excited level and possible nonlinearity (i.e., with a different number of absorbed photons per the emitted one). We used our obtained experimental data to analyze an influence of the pumping power and the doping ions concentration on respective contributions of different processes in the luminescence spectra. We showed that simultaneous appearance of several lines in each observed spectral region is typical for smaller concentrations of Tm3+ (much less than a percent) and larger concentrations of Yb3+ (4–10 %). Increasing Tm3+ concentration up to 3% while having 5% Yb3+ concentration leads to localization of the up-conversion spectrum in 755—840 nm band with a maximum near 793 nm.

About the Authors

M. V. Korolkov
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



I. A. Khodasevich
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



A. S. Piotukh
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



A. S. Grabtchikov
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



E. V. Kolobkova
ITMO University
Russian Federation

St. Petersburg



Thuy Van Nguyen
Institute of Material Sciences, Vietnam Academy of Science and Technology
Viet Nam

Hanoi



D. S. Mogilevtsev
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. F. Auzel. Chem. Rev., 104 (2004) 139—173

2. F. Auzel. J. Lumin., 223 (2020) 116900

3. J. Wright. In Chapter Radiationless Processes in Molecules and Condensed Phases, Ed. F. K. Fong, Ser. Topics in Applied Physics, Springer, New York, 15 (1976) 239—295

4. A. Nadort, J. Zhao, E. M. Goldys. Nanoscale, 8, N 27 (2016) 13099—13130

5. R. Scheps. Prog. Quant. Electron., 20 (1996) 271—358 6. M. F. Joubert. Opt. Mater., 11 (1999) 181—203

6. H. Scheife, G. Huber, E. Heumann, S. Bär. Opt. Mater., 26, N 4 (2004) 365—374

7. X. Zhu, N. Peyghambarianv. Adv. Optoelectron. (2010) 501956, doi: 10.1155/2010/501956

8. S. W. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, N. Peyghambarian. JOSA, B34, N 3 (2017) A49—A62

9. J. C. Goldchmidt, S. Fischer. Adv. Opt. Mater., 3 (2015) 510—535

10. X. Li, F. Zhang, D. Zhao. Chem. Soc. Rev., 44 (2015) 1346—1378

11. L. Qiu, Y. Yang, G. Dong, D. Xia, M. Li, X. Fan, R. Fan. Appl. Surface Sci., 448 (2018) 145—153, doi: 10.1016/j.apsusc.2018.04.058

12. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li. Chem. Rev., 115 (2015) 395—465

13. T. F. Schulze, T. W. Schmidt. Energy Environ. Sci., 8 (2015) 103—125

14. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, T. J. McHugh. Science, 359 (2018) 679—684

15. C. Duan, L. Liang, I. Li, R. Zhang, Z. P. Xu. J. Mater. Chem., B. 6 (2018) 192—209

16. X. Zhu, Q. Su, W. Feng, F. Li. Chem. Soc. Rev., 46 (2017) 1025—1039

17. Y. Zhou, S.-T. Han, X. Chen, F. Wang, Y.-B. Tang, V. A. L. Roy. Nature Commun., 5 (2014) 4720

18. B. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang. Adv. Sci., 5 (2018) 1700667

19. M. Rancic, M. P. Hedges, R. L. Ahlefeldt, M. J. Sellars. Nature Phys., 14 (2018) 50—54

20. C. W. Thiel, T. Böttger, R. L. Cone. J. Lumin., 131 (2011) 353—361

21. F. K. Asadi, S. C. Wein, C. Simon. Quantum Sci. Technol., 5 (2020) 045015

22. M. Dudek, M. Szalkowski, M. Misiak, M. Ćwierzona, A. Skripka, Z. Korczak, D. Piątkowski, P. Woźniak, R. Lisiecki, P. Goldner, S. Maćkowski, E. M. Chan, P. J. Schuck, A. Bednarkiewicz. Adv. Opt. Mater. (2022) 2201052, doi: 10.1002/adom.202201052

23. M. Kraft, C. Würth, E. Palo, T. Soukka, U. Resch-Genger. Methods Appl. Fluores., 7 (2019) 024001

24. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin. Nature, 543 (2017) 229—233

25. D. Jin, P. Xi, B. Wang, L. Zhang, J. Enderlein, A. M. van Oijen. Nature Methods, 15 (2018) 415—423

26. C. Lee, E. Z. Xu, Y. Liu, A. Teitelboim, K. Yao, A. Fernandez-Bravo, A. M. Kotulska, S. H. Nam, Y. D. Suh, A. Bednarkiewicz, B. E. Cohen, E. M. Chan, P. J. Schuck. Nature, 589 (2021) 230—235

27. J. Li, J. Zhang, Z. Hao, X. Zhang, J. Zhao, Y. Luo. J. Appl. Phys., 113 (2013) 223507

28. H. Zhang, Y. Li, Y. Lin, Y. Huang, X. Duan. Nanoscale, 3 (2011) 963—966

29. D. A. Simpson, W. E. K. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, G. W. Baxter. Opt. Express, 16 (2008) 13781—13799

30. F. Guëll, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, J. Massons. Opt. Mater., 30, N 2 (2007) 222—226

31. A. Pal, A. Dhar, S. Das, K. Annapurna, A. Schwuchow, T. Sun, K. T. V. Grattan, R. Sen. J. Opt. Soc. Am., B27, N 4 (2010) 2714—2720

32. M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, F. Cussó. Nanoscale, 3 (2011) 1046—1052

33. E. Kolobkova, A. Grabtchikov, I. Khodasevich. J. Non-Crystal. Sol. X, 11-12 (2021) 100065

34. A. Strzęp, M. Głowacki, M. Szatko, K. Potrząsaj, R. Lisiecki, W. Ryba-Romanowski. J. Lumin., 220 (2020) 116962

35. M. A. Noginov, M. Curley, P. Venkateswarlu, A. Williams. J. Opt. Soc. Am., B14, N 8 (1997) 2126—2136

36. X. Chen, Z. Song. J. Opt. Soc. Am., B24, N 4 (2007) 965—971

37. L. Guillemot, P. Loiko, J.-L. Doualan, A. Braud, P. Camy. Opt. Express, 30, N 18 (2022) 31669—31684

38. A. V. Mikheev, B. N. Kazakov. J. Lumin., 205 (2019) 167—178

39. E. Yu. Perlin, A. M. Tkachuk, M.-F. Joubert, R. Moncorge. Opt. and Spectr., 90, N 5 (2001) 772—781

40. O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, F. Díaz. Appl. Phys. B, 87 (2007) 707—716

41. G. Androz, M. Bernier, D. Faucher, R. Vallée. Opt. Express, 16, N 20 (2008) 16019—16031

42. T. Sun, X. Su, Y. Zhang, H. Zhang, Y. Zheng. Appl. Sci., 11 (2021) 10386

43. B. P. Kore, A. Kumar, R. E. Kroon, J. J. Terblans, H. C. Swart. Opt. Mater., 99 (2020) 109511

44. B. M. Walsh, N. P. Barnes, D. J. Reichle, S. Jiang. J. Non-Crystal. Sol., 352 (2006) 5344—5352

45. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel. Phys. Rev. B, 61 (2000) 3337—3346

46. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, H. U. Güdel. Phys. Rev. B, 71 (2005) 125123

47. W. Chang, L. Li, M. Dou, Y. Yan, S. Jiang, Y Pan, M. Cui, Z. Wu, X. Zhou. Mater. Res. Bull., 112 (2019) 109—114

48. M. V. Korolkov, I. A. Khodasevich, A. S. Grabtchikov, D. Mogilevtsev, E. V. Kolobkova. Opt. Lett., 44, N 23 (2019) 5880—5883

49. M. V. Korolkov. JOSA B, 37, N 11 (2020) 3239—3242


Review

For citations:


Korolkov M.V., Khodasevich I.A., Piotukh A.S., Grabtchikov A.S., Kolobkova E.V., Nguyen T., Mogilevtsev D.S. Line Verification in the Luminescence Spectra of Fluorophosphate Glass Doped with Yterbium and Thulium Ions by the Power of Nonlinearity of Up-Conversion Processes. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):689-695. (In Russ.)

Views: 91


ISSN 0514-7506 (Print)