Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen
Abstract
Photoelectrochemical, structural, and electrocatalytic properties of titanium dioxide (TiO2) nanotubes obtained by the anodization of titanium with subsequent thermal treatment in air or hydrogen were studied. It was shown that thermal treatment of TiO2 nanotubes in hydrogen had no effect on the morphology and phase composition of TiO2 electrodes. However, such treatment led to a high concentration of defect states in the crystal lattice of TiO2 due to reductive doping accompanied by the conversion of Ti4+ to Ti3+. A rise of the defectiveness resulted in a lowering of the overpotential for oxygen electroreduction at titanium dioxide nanotubes annealed in hydrogen compared to those annealed in air. In addition, annealing in hydrogen led to a significant increase in the long-wavelength photocurrent generated under visible light irradiation.
About the Authors
H. M. MaltanavaBelarus
Minsk
A. O. Konakov
Belarus
Minsk, Chernogolovka, Moscow region
T. V. Gaevskaya
Belarus
Minsk
N. V. Belko
Belarus
Minsk
M. P. Samtsov
Belarus
Minsk
S. K. Poznyak
Belarus
Minsk
References
1. X. Chen, S. S. Mao. Chem. Rev., 107, N 7 (2007) 2891—2959
2. C. Dette, M. A. Pérez-Osorio, C. S. Kley, P. Punke, C. E. Patrick, P. Jacobson, F. Giustino, S. J. Jung, K. Kern. Nano Lett., 14 (2014) 6533—6538
3. X. Chen, A. Selloni. Chem. Rev., 114 (2014) 9281—9282
4. P. Roy, S. Berger, P. Schmuki. Angew. Chem. Int. Ed., 50 (2011) 2904—2939
5. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa. Appl. Phys. Lett., 86, N 2 (2005) 252101
6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Science, 293 (2001) 269—271
7. J. Matos, J. Ocares-Riquelme, P. S. Poon, R. Montaña, X. García, K. Campos, J.C. Hernández-Garrido, M. M. Titirici. J. Colloid Interface Sci., 547 (2019) 14—29
8. S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano. Catalyst., 7, N 7 (2017) 214—224
9. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan. Water Res., 38, N 13 (2004) 3001—3008
10. M. A. Barakat, R. I. Al-Hutailah, E. Qayyum, J. Rashid, J. N. Kuhn. Environ. Technol., 35 (2014) 137—144
11. D. Robert. Catal. Today, 122 (2007) 20—26
12. Y. Lin, P. Ren, C. Wei. Cryst. Eng. Comm., 21 (2019) 3439—3450
13. Y. Liu, L. Tian, X. Tan, X. Li, X. Chen. Sci. Bull., 62 (2017) 431—441
14. T. S. Rajaraman, S. P. Parikh, V. G. Gandhi. Chem. Eng. J., 389 (2020) 123918
15. Н. Е. Борорико, Д. В. Свиридов. Журн. Бел. гос. ун-та. Химия, 2 (2020) 89—97
16. X. Chen, L. Liu, P.Y. Yu, S. S. Mao. Science, 331 (2011) 746—750
17. W. Zhou, W. Li, J. Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao. J. Am. Chem. Soc., 136 (2014) 9280—9283
18. X. B. Chen, L. Liu, F. Q. Huang. Chem. Soc. Rev., 44 (2015) 1861—1885
19. M. Tian, M. Mahjouri-Samani, G. Eres, R. Sachan, M. Yoon, M. F. Chisholm, K. Wang, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, G. Duscher. ACS Nano, 9 (2015) 10482—10488
20. X. D. Jiang, Y. P. Zhang, J. Jiang, Y. S. Rong, Y. C. Wang, Y. C. Wu, C. X. Pan. J. Phys. Chem. C, 116 (2012) 22619—22624
21. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo. J. Am. Chem. Soc., 134 (2012) 7600—7603
22. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, J. Zhang. Sci. Rep., 5 (2015) 8591
23. Y. Liu, K. Mu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, S. Zhang. Int. J. Hydrogen Energy, 41 (2016) 10327—10334
24. C. Mao, F. Zuo, Y. Hou, X. Bu, P. Feng. Angew. Chem., 53 (2014) 10485—10489
25. J. Wang, P. Yang, B. Huang. Appl. Surface Sci., 356 (2015) 391—398
26. F. Zuo, K. Bozhilov, R. J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng. Angew. Chem., 124 (2012) 6327—6330
27. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng. J. Am. Chem. Soc., 132 (2010) 11856—11857
28. K. Alamelu, V. Raja, L. Shiamala, A. Jaffar. Appl. Surf. Sci., 430 (2018) 145—154
29. C. Kim, S. Kim, J. Choi, J. Lee, J. S. Kang, Y. E. Sung, J. Lee, W. Choi, J. Yoon. Electrochim. Acta, 141 (2014) 113—119
30. L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Z. Yu, X. Dong. RSC Adv., 8 (2018) 18992—19000
31. H. Maltanava, S. Mazheika, M. Starykevich, T. Gaevskaya, A. Konakov, M. Ferro, J. Tedim, S. Poznyak. J. Electroanal. Chem., 904 (2022) 115844
32. H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, T. Zhang. Sci. Adv., 3, N 5 (2017) e170023(1—8)
33. C. Zhang, H. Yu, Y. Li, L. Fu, Y. Gao, W. Song, Z. Shao, B. Yi. Nanoscale, 5 (2013) 6834—6841
34. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi. Chem. Sus. Chem., 6 (2013) 659—666
35. М. Р. Тарасевич, Е. И. Хрущева, В. Ю. Филиновский. Вращающийся дисковый электрод с кольцом, Москва, Наука (1987) 17—25
36. G. Boschloo, D. Fitzmaurice. J. Phys. Chem. B, 103, N 12 (1999) 2228—2231
37. H. Maltanava, S. Poznyak, M. Ivanovskaya, N. Scharnagl, M. Starykevich, A. N. Salak, M. Soares, A. Mazanik. J. Fluorine Chem., 221 (2019) 34—41
38. А. М. Трунов. Электрохимия, 51, № 4 (2015) 385—392
39. А. М. Мальтанова, Н. Ю. Брежнева, А. В. Мазаник, С. О. Мажейко, Т. В. Гаевская, Е. В. Скорб, С. К. Позняк. Журн. Бел. гос. ун-та. Химия, 2 (2020) 63—75
40. М. Р. Тарасевич, Е. И. Хрущева, Н. А. Шумилова. Итоги науки и техники. Сер. Электрохимия, 13 (1978) 47—93
41. A. Lasia. Electrochemical Impedance Spectroscopy and Its Applications, Boston, Springer (2002) 143—248
42. K. Gelderman, L. Lee, S. W. Donne. J. Chem. Educ., 84, N 4 (2007) 685
43. H. Zhu, M. Zhao, J. Zhou, W. Li, H. Wang, Z. Xu, L. Li, L. Pei, Z. Shi, S. Yan, Z. Li, Z. Zou. Appl. Catal. B: Environ., 234 (2018) 100—108
44. N. Serpone. J. Phys. Chem. B, 110, N 48 (2006) 24287—24293
45. K. Boubaker. Eur. Phys. J. Plus, 126, N 1 (2011) 1—4
46. L. Chiodo, J. M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio. Phys. Rev. B, 82, N 4 (2010) 045207
Review
For citations:
Maltanava H.M., Konakov A.O., Gaevskaya T.V., Belko N.V., Samtsov M.P., Poznyak S.K. Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):882-896. (In Russ.)