Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen

Abstract

Photoelectrochemical, structural, and electrocatalytic properties of titanium dioxide (TiO2) nanotubes obtained by the anodization of titanium with subsequent thermal treatment in air or hydrogen were studied. It was shown that thermal treatment of TiO2 nanotubes in hydrogen had no effect on the morphology and phase composition of TiO2 electrodes. However, such treatment led to a high concentration of defect states in the crystal lattice of TiO2 due to reductive doping accompanied by the conversion of Ti4+ to Ti3+. A rise of the defectiveness resulted in a lowering of the overpotential for oxygen electroreduction at titanium dioxide nanotubes annealed in hydrogen compared to those annealed in air. In addition, annealing in hydrogen led to a significant increase in the long-wavelength photocurrent generated under visible light irradiation.

About the Authors

H. M. Maltanava
Research Institute for Physical Chemical Problems of the Belarusian State University; A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Minsk



A. O. Konakov
Research Institute for Physical Chemical Problems of the Belarusian State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Belarus

Minsk, Chernogolovka, Moscow region



T. V. Gaevskaya
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Minsk



N. V. Belko
A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Minsk



M. P. Samtsov
A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Minsk



S. K. Poznyak
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Minsk



References

1. X. Chen, S. S. Mao. Chem. Rev., 107, N 7 (2007) 2891—2959

2. C. Dette, M. A. Pérez-Osorio, C. S. Kley, P. Punke, C. E. Patrick, P. Jacobson, F. Giustino, S. J. Jung, K. Kern. Nano Lett., 14 (2014) 6533—6538

3. X. Chen, A. Selloni. Chem. Rev., 114 (2014) 9281—9282

4. P. Roy, S. Berger, P. Schmuki. Angew. Chem. Int. Ed., 50 (2011) 2904—2939

5. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa. Appl. Phys. Lett., 86, N 2 (2005) 252101

6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Science, 293 (2001) 269—271

7. J. Matos, J. Ocares-Riquelme, P. S. Poon, R. Montaña, X. García, K. Campos, J.C. Hernández-Garrido, M. M. Titirici. J. Colloid Interface Sci., 547 (2019) 14—29

8. S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano. Catalyst., 7, N 7 (2017) 214—224

9. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan. Water Res., 38, N 13 (2004) 3001—3008

10. M. A. Barakat, R. I. Al-Hutailah, E. Qayyum, J. Rashid, J. N. Kuhn. Environ. Technol., 35 (2014) 137—144

11. D. Robert. Catal. Today, 122 (2007) 20—26

12. Y. Lin, P. Ren, C. Wei. Cryst. Eng. Comm., 21 (2019) 3439—3450

13. Y. Liu, L. Tian, X. Tan, X. Li, X. Chen. Sci. Bull., 62 (2017) 431—441

14. T. S. Rajaraman, S. P. Parikh, V. G. Gandhi. Chem. Eng. J., 389 (2020) 123918

15. Н. Е. Борорико, Д. В. Свиридов. Журн. Бел. гос. ун-та. Химия, 2 (2020) 89—97

16. X. Chen, L. Liu, P.Y. Yu, S. S. Mao. Science, 331 (2011) 746—750

17. W. Zhou, W. Li, J. Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao. J. Am. Chem. Soc., 136 (2014) 9280—9283

18. X. B. Chen, L. Liu, F. Q. Huang. Chem. Soc. Rev., 44 (2015) 1861—1885

19. M. Tian, M. Mahjouri-Samani, G. Eres, R. Sachan, M. Yoon, M. F. Chisholm, K. Wang, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, G. Duscher. ACS Nano, 9 (2015) 10482—10488

20. X. D. Jiang, Y. P. Zhang, J. Jiang, Y. S. Rong, Y. C. Wang, Y. C. Wu, C. X. Pan. J. Phys. Chem. C, 116 (2012) 22619—22624

21. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo. J. Am. Chem. Soc., 134 (2012) 7600—7603

22. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, J. Zhang. Sci. Rep., 5 (2015) 8591

23. Y. Liu, K. Mu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, S. Zhang. Int. J. Hydrogen Energy, 41 (2016) 10327—10334

24. C. Mao, F. Zuo, Y. Hou, X. Bu, P. Feng. Angew. Chem., 53 (2014) 10485—10489

25. J. Wang, P. Yang, B. Huang. Appl. Surface Sci., 356 (2015) 391—398

26. F. Zuo, K. Bozhilov, R. J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng. Angew. Chem., 124 (2012) 6327—6330

27. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng. J. Am. Chem. Soc., 132 (2010) 11856—11857

28. K. Alamelu, V. Raja, L. Shiamala, A. Jaffar. Appl. Surf. Sci., 430 (2018) 145—154

29. C. Kim, S. Kim, J. Choi, J. Lee, J. S. Kang, Y. E. Sung, J. Lee, W. Choi, J. Yoon. Electrochim. Acta, 141 (2014) 113—119

30. L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Z. Yu, X. Dong. RSC Adv., 8 (2018) 18992—19000

31. H. Maltanava, S. Mazheika, M. Starykevich, T. Gaevskaya, A. Konakov, M. Ferro, J. Tedim, S. Poznyak. J. Electroanal. Chem., 904 (2022) 115844

32. H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, T. Zhang. Sci. Adv., 3, N 5 (2017) e170023(1—8)

33. C. Zhang, H. Yu, Y. Li, L. Fu, Y. Gao, W. Song, Z. Shao, B. Yi. Nanoscale, 5 (2013) 6834—6841

34. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi. Chem. Sus. Chem., 6 (2013) 659—666

35. М. Р. Тарасевич, Е. И. Хрущева, В. Ю. Филиновский. Вращающийся дисковый электрод с кольцом, Москва, Наука (1987) 17—25

36. G. Boschloo, D. Fitzmaurice. J. Phys. Chem. B, 103, N 12 (1999) 2228—2231

37. H. Maltanava, S. Poznyak, M. Ivanovskaya, N. Scharnagl, M. Starykevich, A. N. Salak, M. Soares, A. Mazanik. J. Fluorine Chem., 221 (2019) 34—41

38. А. М. Трунов. Электрохимия, 51, № 4 (2015) 385—392

39. А. М. Мальтанова, Н. Ю. Брежнева, А. В. Мазаник, С. О. Мажейко, Т. В. Гаевская, Е. В. Скорб, С. К. Позняк. Журн. Бел. гос. ун-та. Химия, 2 (2020) 63—75

40. М. Р. Тарасевич, Е. И. Хрущева, Н. А. Шумилова. Итоги науки и техники. Сер. Электрохимия, 13 (1978) 47—93

41. A. Lasia. Electrochemical Impedance Spectroscopy and Its Applications, Boston, Springer (2002) 143—248

42. K. Gelderman, L. Lee, S. W. Donne. J. Chem. Educ., 84, N 4 (2007) 685

43. H. Zhu, M. Zhao, J. Zhou, W. Li, H. Wang, Z. Xu, L. Li, L. Pei, Z. Shi, S. Yan, Z. Li, Z. Zou. Appl. Catal. B: Environ., 234 (2018) 100—108

44. N. Serpone. J. Phys. Chem. B, 110, N 48 (2006) 24287—24293

45. K. Boubaker. Eur. Phys. J. Plus, 126, N 1 (2011) 1—4

46. L. Chiodo, J. M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio. Phys. Rev. B, 82, N 4 (2010) 045207


Review

For citations:


Maltanava H.M., Konakov A.O., Gaevskaya T.V., Belko N.V., Samtsov M.P., Poznyak S.K. Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):882-896. (In Russ.)

Views: 143


ISSN 0514-7506 (Print)