![Open Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/opened.png)
![Restricted Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/closed.png)
Temperature-Frequency Dependences of Electrophysical Characteristics of Polyfunctional Compounds Using the Example of Guiacole
Abstract
Guaiacol is a model compound of one of the most common lignin biopolymers. The results of the analysis of the dependences of the components of the complex dielectric permittivity and specific electrical conductivity in the frequency ranges of 10–2–107 Hz and temperatures of 213–433 K of guaiacol are presented. Three groups of relaxators are identified. Their characteristics (relaxation time, activation energy) are defined. The change in the activation energy depending on the aggregate state is shown. The similarity of the processes of dielectric relaxation and conductivity of lignin and its model compounds in an alternating electric field are established.
About the Authors
A. S. VolkovRussian Federation
Arkhangelsk
S. S. Khviyuzov
Russian Federation
Arkhangelsk
References
1. S. Sethupathy, G. M. Morales, L. Gao, H. Wang, B. Yang, J. Jiang, J. Sun, D. Zhu. Bioresource Technology, 347 (2022) 126696
2. R. D’Orsi, C. V. Irimia, J. J. Lucejko, B. Kahraman, Y. Kanbur, C. Yumusak, M. Bednorz, F. Babudri, M. Irimia-Vladu, A. Operamolla. Adv. Sustainable Syst., 6 (2022) 2200285
3. M. P. F. Gracё, A. Rudnitskaya, A. C. Fernando, F. A. C. Faria, D. V. Evtuguin, M. T. S. R. Gomes, J. A. B. P. Oliveira, L. C. Costa. Electrochim. Acta, 76 (2012) 69—76
4. J. H. Park, H. H. Rana, J. Y. Lee, H. S. Park. J. Mater. Chem. A, 7 (2019) 16962—16968
5. W. Gindl-Altmutter, C. Fürst, A. Mahendran, M. Obersriebnig, G. Emsenhuber, M. Kluge, S. Veigel, J. Keckes, F. Liebner. Carbon, 89 (2015) 161—168
6. T. Gao, Y. Zhang, J. Shi, S. R. Mohamed, J. Xu, X. Liu. Front. Microbiol., 12 (2021) 762844
7. H. Liu, B. Lepoittevin, C. Roddier, V. Guerineau, L. Bech, J.-M. Herry, M.-N. Bellon-Fontaine, P. Roger. Polymer, 52, N 9 (2011) 1908—1916
8. L. Fang, Y. Tao, J. Zhou, C. Wang, M. Dai, J. Sun, Q. Fang. Polym. Chem., 12, N 5 (2021) 766—770
9. S. D. Kukade, S. V. Bawankar. J. Electron. Mater., 47 (2018) 2905—2910
10. E. I. Chupka, T. M. Rykova. Chem. Nat. Compd., 19 (1983) 78—80
11. M. P. Tonkonogov. Phys. Usp., 41, N 1 (1998) 25—48.
12. K. G. Bogolitsyn, S. S. Khviyuzov, A. S. Volkov, G. D. Koposov, M. A. Gusakova. Russ. J. Phys. Chem. A, 93 (2019) 353—358.
13. J. J. Lindberg. Acta Chem. Scand., 14 (1960) 379—384
14. C. G. Nordstrom, J. J. Lindberg. Suomen. Kem., 38, N 1 (1965) 3291—3295
15. S. Havriliak, S. Negami. J. Polym. Sci. C, 14 (1966) 99—117
16. K. S. Cole, R. H. Cole. J. Phys. Chem., 9 (1941) 341—351
17. P. Debye. Polar Molecules, New York, Chemical Catalog Co. (1929)
18. D. W. Devidson, R. H. Cole. J. Chem. Phys., 19 (1951) 1484—1490
19. G. Wilke, M. Stockhausen. Phys. Chem. Liquids, 33, N 1 (1996) 57—63
20. F. F. Hanna, A. M. Bishai. Z. Phys. Chemie, 259 (1978) 849—855
21. Г. Д. Копосов, А. В. Тягунин. Физика пассивных диэлектриков, Архангельск, КИРА (2013)
22. S. Khviyuzov, K. Bogolitsyn, A. Volkov, G. Koposov, M. Gusakova. Holzforschung, 74, N 12 (2020) 1113—1122
23. A. S. Volkov, G. D. Koposov, S. S. Khviyuzov. Chem. Phys., 548 (2021) 111202
24. K. G. Bogolitsyn, S. S. Khviyuzov. Polym. Bull., 80, N 1 (2023) 1001—1015
Review
For citations:
Volkov A.S., Khviyuzov S.S. Temperature-Frequency Dependences of Electrophysical Characteristics of Polyfunctional Compounds Using the Example of Guiacole. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):902-909. (In Russ.)