Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effect of the Spectral Composition of LED Artificial Lighting Sources on the Functional Activity of the Photosynthetic Apparatus of Basil Leaves

Abstract

The influence of six experimental light sources (lamps) based on LEDs with different emission spectra, simulating optical radiation close to solar radiation, on the photochemical activity of photosystems (PS) of leaves of purple basil, as well as on the redox state of the P700 reaction center, has been studied. The studied spectra differ in the distribution of photon flux over the main emission spectrum ranges, correlated color temperature (CCT) and general color rendering index (Ra). As a result of a comparative analysis of PAM fluorometry parameters, spectral regions have been identified that ensure more efficient photosynthetic processes in the leaf cells of basil plants at the stages of technical ripeness and flowering. In particular, basil plants grown on a spectrum with a CCT of 5260 K and Ra 98 have a fairly low F0 level, one of the highest Fv/Fm ratios, characteristic of plants under non-stressful conditions, one of the highest quantum yields of both PS Y(I) and Y(II), as well as high electron flow rates. The spectra with CCT 4550 K, Ra 91, CCT 2820 K, Ra 81 also look promising in terms of PAM fluorimetry parameters. The spectrum with CCT 2990 K and Ra 97 has the worst performance in terms of the studied PSI and PSII parameters.

About the Authors

E. M. Kabacheuskaya
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Minsk



S. V. Sukhoveeva
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Minsk



Yu. V. Trofimov
Center of LED and Optoelectronic Technologies of the National Academy of Sciences of Belarus
Belarus

Minsk



M. I. Barkun
Center of LED and Optoelectronic Technologies of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. E. Kaiser, Galvis V. Correa, U. Armbruster. Biochem. J., 476, N 19 (2019) 2725—2741, https://doi.org/10.1042/BCJ20190134

2. J. A. Cruz, T. J. Avenson. J. Plant. Res., 134, N 4 (2021) 665—682, https://doi.org/10.1007/s10265-021-01321-4

3. O. I. L. Mawphlang, E. V. Kharshiing. Front. Plant. Sci., 8, 1181 (2017), https://doi.org/10.3389/fpls.2017.01181

4. I. D. Volotovski, S. V. Suchoveeva, E. M. Kabachevskaya. Proc. National Academy of Sciences of Belarus. Biological ser., 68, N 1 (2023) 75—88., https://doi.org/10.29235/1029-8940-2023-68-1-75-88

5. S. K. Verma, S. Gantait, B. R. Jeong, S. J. Hwang. Sci. Rep., 8, 18009 (2018), https://doi.org/10.1038/s41598-018-36113-9

6. Y. A. Berkovich, I. O. Konovalova, A. N. Erokhin, S. O. Smolyanina, V. G. Smolyanin, O. S. Yakovleva, I. G. Tarakanov, T. M. Ivanov. Life Sci. Space Res. (Amst.), 20 (2019) 93—100, https://doi.org/10.1016/j.lssr.2018.09.004

7. M. de Wit, V. C. Galvão, C. Fankhauser. Ann. Rev. Plant Biol., 67 (2016) 513—537, https://doi.org/10.1146/annurev-arplant-043015-112252

8. E. Heyneke, A. R. Fernie. Biochem. Soc. Trans., 46, N 2 (2018) 321—328, https://doi.org/10.1042/BST20170296

9. C. Kami, S. Lorrain, P. Hornitschek, C. Fankhauser. Curr. Top Dev. Biol., 91 (2010) 29—66, https://doi.org/10.1016/S0070-2153(10)91002-8

10. I. G. Tarakanov, D. A. Tovstyko, M. P. Lomakin, A. S. Shmakov, N. N. Sleptsov, A. N. Shmarev, V. A. Litvinskiy, A. A. Ivlev. Plants, 11, N 3 (2022) 441, https://doi.org/10.3390/plants11030441

11. S. Muneer, E. J. Kim, J. S. Park, J. H. Lee. Int. J. Mol. Sci., 15, N 3 (2014) 4657—4670, https://doi.org/10.3390/ijms15034657

12. G. V. Kochetova, O. V. Avercheva, E. M. Bassarskaya, T. V. Zhigalova. Biophys. Rev., 14, N 4 (2022) 779—803, https://doi.org/10.1007/s12551-022-00985-z

13. Т. Г. Курьянчик, Н. В. Козел. Журн. прикл. спектр., 90, № 3 (2023) 509—515 T. G. Kuryanchyk, N. V. Kozel. J. Appl. Spectr., 90, N 3 (2023) 509—515.

14. M. R. Fernandes, G. Siqueira-Silva, A. S. João. Acta Botanica Brasilica, 33 (2019) 558—571, https://doi.org/10.1590/0102-33062019abb0149.

15. V. N. Goltsev, M. H. Kalaji, M. A. Kouzmanova, S. I. Allakhverdiev. Variable and Delayed Chlorophyll a Fluorescence – Basics and Application in Plant Sciences, Institute of Computer Sciences (2014) 50—84.

16. H. K. Lichtenthaler, C. Buschmann, M. Knapp. Photosynthetica, 43, N 3 (2005) 379—393, https://doi.org/10.1007/s11099-005-0062-6

17. C. Guo, L. Liu, H. Sun, N. Wang, K. Zhang, Y. Zhang, J. Zhu, A. Li, Z. Bai, X. Liu, H. Dong, C. Li. Front. Plant Sci., 13 (2022), https://doi.org/10.3389/fpls.2022.1007150

18. C. Klughammer, U. Schreiber. PAM Appl. Notes, 1 (2008) 27—35

19. S. Tietz, C. C. Hall, J. A. Cruz, D. M. Kramer. Plant, Cell and Environment, 40 (2017) 1243—1255, https://doi.org/10.1111/pce.12924

20. K. Maxwell, G. N. Johnson. J. Exp. Bot., 51 (2000) 659—668, https://doi.org/10.1093/jexbot/51.345.659

21. G. Shimakawa, C. Miyake. Plant Physiol., 179, N 4 (2019) 1479—1485, https://doi.org/10.1104/pp.18.01493

22. H. Sun, Q. Shi, S. B. Zhang, W. Huang. Plants (Basel), 10, N 3 (2021) 606, https://doi.org/10.3390/plants10030606


Review

For citations:


Kabacheuskaya E.M., Sukhoveeva S.V., Trofimov Yu.V., Barkun M.I. Effect of the Spectral Composition of LED Artificial Lighting Sources on the Functional Activity of the Photosynthetic Apparatus of Basil Leaves. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):910-916. (In Russ.)

Views: 103


ISSN 0514-7506 (Print)