Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Semi-Analytical Representations of Fourth-Order Mutual Coherence Function for Laser Beam in Turbulent Medium

Abstract

New (linear and non-linear) integro-functional equations are derived. The solutions of these equations are truncated spectral characteristics of fourth-order mutual coherence function of a laser beam propagating in a turbulent medium. The linear integro-functional equation includes some function W on which the solution of this equation does not depend (that is, it is invariant under any choice of function W). Firstly, formally rigorous and fairly simple representations for the fourth-order mutual coherence function and its truncated spectral characteristics are obtained. In finding these and other representations for these functions, we used, in particular, the property of invariance of solutions of a second-order partial differential equation for fourth-order mutual coherence function and new linear integro-functional equation with respect to any choice of function W. It is shown that by means of a special choice of this function and the parameters that determine the positions of the observation points and the cross sections of the laser beam, it is possible to obtain various exact, asymptotic, and semi-analytical representations for the truncated spectral characteristics, integral characteristics of the fourth-order mutual coherence function, and this function itself. In addition, semi-analytical representations are understood as representations that contain information about unknown values in a partially implicit form, but at the same time allow them to be found in an analytical (or numerical) form through the use of any (for example, iterative) constructive procedures. In particular, a semi-analytical representation is the recursive formula obtained in the article. It can be used to effectively find analytical expressions or numerical values for the above-mentioned functions on various cross sections of a laser beam propagating in a turbulent medium.

About the Author

N. N. Rogovtsov
Belarus National Technical University
Belarus

Minsk



References

1. В. И. Шишов. Изв. вузов. Радиофизика, 11, № 6 (1968) 866—875

2. V. I. Tatarskii. The Effects of the Turbulent Atmosphere on Wave Propagation, Springfield, VA, U.S. Department of Commerce (1971)

3. D. A. de Wolf. IEEE Trans. Antennas Prop., 19 (1971) 254—262

4. W. P. Brown. J. Opt. Soc. Am., 62 (1972) 45—54

5. A. Ishimaru. Wave Propagation and Scattering in Random Media, New York, Academic Press (1978)

6. R. L. Fante. J. Opt. Soc. Am., 71, N 12 (1981) 1446—1451

7. C. L. Rino. Radio Sci., 17 (1982) 855—867

8. B. J. Uscinski. J. Opt. Soc. Am. A, 2, N 12 (1985) 2077—2091

9. M. Tur. J. Opt. Soc. Am. A, 2, N 12 (1985) 2161—2170

10. V. S. Filinov. Waves Random Media, 5, N 3 (1995) 277—287

11. Z.-S. Wang. Lett. Math. Phys., 13, N 4 (1987) 261—271

12. S. Y. Lee, C. H. Liu, K. C. Yeh. In: Research Topics in Electromagnetic Wave Theory, ch. 2, Ed. J. A. Kong, New York, Wiley (1981) 1—32

13. I. G. Yakushkin. Radiophys. Quantum Electron., 21 (1978) 835—840

14. I. C. Andrews, R. L. Philipps. Laser Beam Propagation Through Random Media, Bellingham, SPIE Press (2005)

15. A. Fannjiang, K. Solna. Phys. Lett. A, 352 (2005) 22—29

16. J.-P. Fouque, J. Garnier, G. Papanicolaou, K. Solna. Wave Propagation and Time Reversal in Randomly Layered-Media, New York, Springer (2007)

17. Y. Mao, J. Gilles. Inverse Problems and Imaging, 6 (2012) 531—546

18. Z. C. Chen, P. Li, J. Pu Ding, D. Zhao. Appl. Phys. B, 107, N 2 (2012) 469—472

19. V. A. Banakh, I. N. Smalikho. Opt. Express, 22, N 19 (2014) 1—13

20. А. В. Фалиц. Опт. атм. океана, 28, № 9 (2015) 763—771

21. И. П. Лукин. Опт. атм. океана, 31, № 9 (2018) 685—697

22. S. Silvestri, D. J. E. M. Roekaerts, R. Pecnik. J. Quant. Spectrosc. Radiat. Transfer 233 (2019) 134—148

23. N. N. Rogovtsov, V. Ya. Anissimov. J. Appl. Spectr., 87, № 2 (2020) 221—228.

24. N. N. Rogovtsov, V. Ya. Anissimov. J. Appl. Spectr., 88, № 6 (2021) 1144—1151.

25. N. N. Rogovtsov. In: Light Scattering Reviews, 5, Ed. A. A. Kokhanovsky, Chichester, Springer-Praxis (2010) 243—327

26. N. N. Rogovtsov. J. Appl. Spectr., 34, N 2 (1981) 241—246.

27. Н. Н. Роговцов. Докл. АН БССР, 25, N 5 (1981) 420—423

28. N. N. Rogovtsov. J. Appl. Spectr., 35, N 6 (1981) 1354—1359.

29. N. N. Rogovtsov. J. Appl. Spectr., 43, N 1 (1985) 813—816.

30. Н. Н. Роговцов. Свойства и принципы инвариантности. Приложение к решению задач математической физики, ч. 1, Минск, МО РБ, БГПА (1999)

31. N. N. Rogovtsov. Differential Equations, 26, N 4 (1990) 436—441.

32. N. N. Rogovtsov. Differential Equations, 44, N 9 (2008) 1—20.

33. N. N. Rogovtsov. Differential Equations, 51, N 2 (2015) 268—281, 661—673.

34. N. N. Rogovtsov, F. Borovik. J. Quant. Spectrosc. Radiat. Transfer, 183 (2016) 128—153

35. N. N. Rogovtsov. ASP Conf. Ser., 511 (2017) 276—281

36. Распространение лазерного пучка в атмосфере: Проблемы прикладной физики, под ред. Д. Стробена, Москва, Мир (1981) 175—177

37. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, V. V. Pokasov. In: Laser Beam Propagation in the Atmosphere, Ed. J. W. Strohbehn, Berlin, Springer (1978) 107—127

38. S. N. Kurilkina, V. N. Belyi, N. S. Kazak. Opt. Comm., 283 (2010) 3860—3868

39. Д. А. Маракасов, Д. С. Рычков. Опт. атм. океана, 29, № 4 (2016) 317—322


Review

For citations:


Rogovtsov N.N. Semi-Analytical Representations of Fourth-Order Mutual Coherence Function for Laser Beam in Turbulent Medium. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):932-941. (In Russ.)

Views: 166


ISSN 0514-7506 (Print)