LIBS Hydrogen Isotopes Detection: Significance in Nuclear/Fusion Technology
Abstract
The aspect of the detection of hydrogen isotopes in nuclear materials was analyzed in this review. Particular attention was paid to the spectroscopic methods for the detection of hydrogen isotopes in fusion reactor materials since their presence can induce severe problems in terms of material degradation and shortening of its lifetime. The main focus is on laser-induced breakdown spectroscopy, an optical emission method that is efficient, reliable, and fast. Recent results obtained at the VINCA Institute will also be presented.
Keywords
About the Authors
M. TrticaSerbia
Belgrade
J. Savovic
Serbia
Belgrade
M. Kuzmanovic
Serbia
Faculty of Physical Chemistry
Belgrade
D. Rankovic
Serbia
Faculty of Physical Chemistry
Belgrade
J. Stasic
Serbia
Belgrade
References
1. M. Trtica, M. Kuzmanovic, J. Savovic, D. Rankovic, Appl. Surf. Sci., 572, 151424 (2022).
2. M. Trtica, J. Savovic, M. Kuzmanovic, D. Rankovic, Proc. X Int. Conf. “Plasma Physics and Plasma Technology”, September 12–16, 2022, Minsk, Belarus, 173–176 (2022).
3. C. N. Taylor, J. Nuclear Mater., 558, 153396 (2022).
4. R. Gonzalez-Arrabal, A. Rivera, J. M. Perlado, Matter. Radiat. Extremes, 5, 055201 (2020).
5. A. K. Suri, N. Krishnamurthy, I. S. Batra, J. Phys: Conf. Ser., 208, 012001 (2010).
6. J. M. Perlado, J. Sanz, J. Alvarez, D. Cereceda, et al., Proc. SPIE, 8080, 80801Z(1–10) (2011).
7. L. Gao, A. Manhard, W. Jacob, von U. Toussaint, M. Balden, K. Schmid, Nuclear Fusion, 59, No. 5, 056023 (2019).
8. M. Victoria, N. Baluc, P. Spatig, Nucl. Fusion, 41, No. 8, 1047–1053 (2001).
9. S. Sahin, J. Ther. Eng., 5, No. 2, 46–57 (2019).
10. J. Chene, F. Martin, Phil. Trans. R. Soc. A, 375, 20160406 (2017).
11. R. H. Jones, J. Nuclear Mater., 141-143, 468–475 (1986).
12. J. B. Condon, T. Schober, J. Nuclear Mater., 207, 1–24 (1993).
13. M. K. Gupta, A. Priyadarshi, N. Manwal, Z. Khan, “Techniques to Measure Hydrogen Content in SS 304L”. Technical Report IPR/TR-377/2016. IPR Library, India (2016).
14. M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, J. B. Spicer, Sensors, 10, No. 5, 4342–4372 (2010).
15. V. K. Singh, A. K. Rai, Laser Med. Sci., 26, No. 5, 673–687 (2011).
16. D. W. Hahn, N. Omenetto, Appl. Spectrosc., 64, No. 12, 335–366 (2010).
17. D. A. Cremers, L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed., John Wiley and Sons, Ltd. New Delhi (2013).
18. M. S. Trtica, J. Savovic, M. Stoiljkovic, M. Kuzmanovic, M. Momcilovic, J. Ciganovic, S. Zivkovic, Proc. SPIE, 9810, 981010(1–11) (2015).
19. S. Legnaioli, B. Campanella, F. Poggialini, S. Pagnotta, M. A. Harith, Z. A. Abdel-Salam, V. Palleschi, Anal. Methods, 12, 1014–1029 (2020).
20. J. Oelmann, E. Wust, G. Sergienko, S. Brezinsek, Phys. Scr., 96, No. 12, 124064 (2021).
21. D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, H. Ding, Rev. Sci. Instrum., 89, No. 7, 073501 (2018).
22. N. Ashikawa, D. Zhao, C. Li, H. Ding, LHD Exp. Group, Proc. of A3 Foresight Program Seminar on Critical Physics Issues Specific to Steady State Sustainment of High-Performance Plasmas 2015. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/089/49089674.pdf?r=1
23. I. Jogi, J. Ristkok, J. Raud, J. Butikova, K. Mizohata, P. Paris, Fus. Eng. Design, 179, 113131 (2022).
24. H. J. vander Meiden, S. Almaviva, J. Butikova, V. Dwivedi, P. Gasior, W. Gromelski, A. Hakola, X. Jiang, I. Jõgi, J. Karhunen, M. Kubkowska, M. Laan, G. Maddaluno, A. Marín-Roldán, P. Paris, K. Piip, M. Pisarcík, G. Sergienko, M. Veis, P. Veis, S. Brezinsek, Nuclear Fusion, 61, No. 12, 125001 (2021).
25. R. Fantoni, S. Almaviva, L. Caneve, F. Colao, G. Maddaluno, P. Gasior, M. Kubkowska, Spectrochim. Acta B, 129, 8–13 (2017).
26. S. Almaviva, L. Caneve, F. Colao, G. Maddaluno, Fus. Eng. Design B, 146, 2087–2091 (2019).
27. D. W. Kneff, W. E. Nagel, H. Pearlman, V. J. Schaubert, A Document Review to Characterize Atomic International SNAP Fuels Shipped to INEL 1966-1973. Report INEL-95/0131 UC-510 (1995).
28. K. H. Kurniawan, T. J. Lie, N. Idris, T. Kobayashi, T. Maruyama, H. Suyanto, K. Kagawa, M. OnTjia, J. Appl. Phys., 96, No. 3, 1301–1309 (2004).
29. A. C. Fraker, Corrosion of Zircaloy Spent Fuel Cladding in a Repository, National Institute of Standards and Technology, USA (1989).
30. S. Suman, Nucl. Eng. Tech., 53, No. 2, 474–483 (2021).
31. M. Pardede, I. Kamadi, R. Hedwik, I. Tanra et al., Nat. Sci. Rep., 11, 21999 (2021).
32. E. J. Kautz, A. Devaraj, D. J. Senor, S. S. Harilal, Opt. Express, 29, No. 4, 4936–4946 (2021).
33. A. I. Whitehouse, Spectrosc. Eur., 18, No. 2, 14–21 (2006).
34. M. Momčilović, S. Živković, M. Kuzmanović, J. Ciganović, D. Ranković, M. Trtica, J. Savović, Plasma Chem. Plasma Proc., 39, No. 4, 985–1000 (2019).
35. M. Kuzmanović, D. Ranković, M. Trtica, J. Ciganović, J. Petrović, J. Savović, Spectrochim. Acta B, 157, 37–46 (2019).
36. M. Momcilovic, M. Kuzmanovic, D. Rankovic, J. Ciganovic, M. Stoiljkovic, J. Savovic, M. Trtica, Appl. Spectrosc., 69, No. 4, 419–429 (2015).
37. W. O. Siew, K. H. Wong, S. S. Yap, T. Y. Tou, IEEE Trans. Plasma Sci., 33, No. 1, 176–182 (2005).
38. A. N. Panchenko, M. A. Shulepov, A. E. Tel'minov, L. A. Zakharov, A. A. Paletsky, N. M. Bulgakova, J. Phys. D: Appl. Phys., 44, No. 38, 385201 (2011).
39. Y. Yu, L. B. Guo, Z. Q. Hao, X. Y. Li, M. Shen, Q. D. Zeng, K. H. Li, X. Y. Zeng, Y. F. Luand, Z. Ren, Opt. Express, 22, No. 4, 3895–3901 (2014).
40. M. Schwickert, E. Carpene, K. P. Leib, M. Uhrmacher, P. Schaaf, Appl. Phys. Lett., 84, No. 25, 5231–5233 (2004).
41. V. S. Burakov, V. V. Kiris, M. I. Nedelko, A. A. Nevar, N. V. Tarasenko, Proc. XII Symp. of Belarus and Serbia on Phys. and Diagnostic of Lab. and Astrophys. Plasmas, August 27–31, 2018, Belgrade, 5–8 (2018).
Review
For citations:
Trtica M., Savovic J., Kuzmanovic M., Rankovic D., Stasic J. LIBS Hydrogen Isotopes Detection: Significance in Nuclear/Fusion Technology. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):964.