Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Exploring Machine-Learning-Enabled LIBS Towards Forensic Trace Attributive Analysis of Fission Products in Surrogate High-Level Nuclear Waste

Abstract

We investigated the utility of machine-learning-enabled LIBS for direct rapid analysis of selected fission products (FPs), namely Y, Sr, Rb, and Zr in surrogate high-level nuclear waste mimicking three hypothetical but realistic scenarios: post-detonation glass debris, post-detonation powders, and microliter liquid drops from a radiological crime scene (RCS). Artificial neural network calibration strategies for trace quantitative analysis of the FPs in these materials were developed and achieved >95% prediction for all sample types. Owing to a lack of appropriate certified reference materials synthetic reference standards materials were used to perform method validation to accuracies ˃91%. Based on the spectral responses of the FPs, principal component analysis successfully differentiated nuclear from non-nuclear waste, demonstrating the method’s potential for RCS nuclear forensic and attributive analysis.

About the Authors

J. N. Onkangi
University of Nairobi
Kenya

Joshua Nyairo Onkangi

Department of Physics

Nairobi 

 



H. K. Angeyo
University of Nairobi
Kenya

Hudson Kalambuka Angeyo

Department of Physics

Nairobi 



References

1. H. K. Angeyo, Int. J. Nucl. Secur., 4, No. 1, Article 2 (2018).

2. M. Miller, Nonproliferation Rev., 14, No. 1, 33–60 (2007), doi: 10.1080/10736700601178465.

3. Y.-S. Kim et al., Spectrochim. Acta B: At. Spectrosc., 74, 90–193 (2012).

4. S. Rai, A. K. Rai, AIP Adv., 1, No. 4, 042103 (2011).

5. D. A. Cremers, L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons (2013).

6. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, Appl. Phys. A, 69, No. 1, S887–S894 (1999).

7. I. Choi, G. C.-Y. Chan, X. Mao, D. L. Perry, R. E. Russo, Appl. Spectrosc., 67, No. 11, 1275–1284 (2013), doi: 10.1366/13-07066.

8. P. Devangad et al., Opt. Mater., 52, 32–37 (2016).

9. E. C. Jung, D. H. Lee, J.-I. Yun, J. G. Kim, J. W. Yeon, K. Song, Spectrochim. Acta B: At. Spectrosc., 66, No. 9, 761–764 (2011).

10. X. Wang et al., Spectrochim. Acta B: At. Spectrosc., 87, 139–146 (2013).

11. I. Gaona, J. Serrano, J. Moros, J. J. Laserna, Spectrochim. Acta B: At. Spectrosc., 96, 12–20 (2014).

12. A. E. Jones, P. Turner, C. Zimmerman, J. Y. Goulermas, Anal. Chem., 86, No. 11, 5399–5405 (2014).

13. N. Labbé, I. M. Swamidoss, N. André, M. Z. Martin, T. M. Young, T. G. Rials, Appl. Opt., 47, No. 31, G158–G165 (2008).

14. H. K. Angeyo, International Atomic Energy Agency (IAEA) International Conference on Nuclear Security: Enhancing Global Efforts, Vienna, Austria, 1–5 July (2013).

15. J. J. Molgaard et al., J. Radioanal. Nucl. Chem., 304, No. 3, 1293–1301 (2015).

16. B. A. Hanson, Package Version, 2 (2014).

17. P. Pease, Spectrochim. Acta B: At. Spectrosc., 83, 37–49 (2013).

18. M. Cilimkovic, Inst. Technol. Blanchardstown Blanchardstown Road North Dublin, 15, No. 1 (2015) [Online]. Available: https://drive.uqu.edu.sa/_/takawady/files/NeuralNetworks.pdf

19. V. Skorpil, J. Stastny, “Back-Propagation and K-Means Algorithms Comparison,” presented at the 8th Int. Conf. Signal Processing (2006).

20. R. N. Naguib, G. V. Sherbet, Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management, CRC Press (2001).

21. A. M. Bevilacqua, N. B. M. de Bernasconi, M. E. Sterba, “Desarrollo de la Formulación y Preparación de Residuos Simulados de Alta Actividad Tipo PHWR,” Bariloche, Argentina (1987).

22. M. J. Bell, “ORIGEN: the ORNL isotope generation and depletion code,” Oak Ridge National Lab. (1973).

23. M. A. Audero, A. M. Bevilacqua, N. B. de Bernasconi, D. O. Russo, M. E. Sterba, J. Nucl. Mater., 223, No. 2, 151–156 (1995).

24. F. Marini, R. Bucci, A. L. Magrì, A. D. Magrì, Microchem. J., 88, No. 2, 178–185 (2008).

25. N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, I. Barman, PLoS One, 7, No. 2, e32406 (2012).

26. S. D. Kamath, C. S. D’souza, S. Mathew, S. D. George, C. Santhosh, K. K. Mahato, J. Chemom. J. Chemom. Soc., 22, No. 6, 408–416 (2008).

27. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes, Spectrochim. Acta B: At. Spectrosc., 61, No. 3, 301–313 (2006).

28. D. A. Cremers, F.-Y. Yueh, J. P. Singh, H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis. Wiley Online Library, 2006. Accessed: Jul. 19 (2015). [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a0708.pub2/full

29. A. Haider, M. Wahadoszamen, M. E. Sadat, K. M. Abedin, A. I. Talukder, Opt. Laser Technol., 42, No. 6, 969–974 (2010).

30. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc., 53, No. 8, 960–964 (1999).

31. P. Yaroshchyk, D. Body, R. J. Morrison, B. L. Chadwick, Spectrochim. Acta B: At. Spectrosc., 61, No. 2, 200–209 (2006).

32. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, R. C. Wiens, Spectrochim. Acta B: At. Spectrosc., 64, No. 1, 79–88 (2009).

33. M. Z. Martin, N. Labbé, T. G. Rials, S. D. Wullschleger, Spectrochim. Acta B: At. Spectrosc., 60, No. 7-8, 1179–1185 (2005).

34. J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, G. Manhes, J. Anal. At. Spectrom., 22, No. 12, 1471–1480 (2007).

35. D. Alamelu, A. Sarkar, S. K. Aggarwal, Talanta, 77, No. 1, 256–261 (2008).

36. K. Banas et al., Anal. Chem., 82, No. 7, 3038–3044 (2010).


Review

For citations:


Onkangi J.N., Angeyo H.K. Exploring Machine-Learning-Enabled LIBS Towards Forensic Trace Attributive Analysis of Fission Products in Surrogate High-Level Nuclear Waste. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):965.

Views: 92


ISSN 0514-7506 (Print)