Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Ligand Field Parameters of Samarium Activated Alumino-Borate Based Glasses

Abstract

The nature of the Sm–O bond of samarium-activated alumino-borate-based glasses prepared via the melt-quenching technique was investigated using the Ligand field parameters. Crystal field strength (Dq/B) and Racah parameters B and C were derived from the high-energy region of the absorption spectra. B and C are parameters that describe the influence of the inter-electronic force of repulsion in an atom and hence approximate the strength of the Sm–O bond. The absorption spectra revealed nine bands of transitions from the lower 6H5/2 energy level of Samarium to higher 6P3/2, 4I11/2, 6Hj, and 6Fk levels (j = 15/2, 1/2, k = 11/2, 9/2, 7/2, 5/2, and 3/2). The Sm-O bond in the prepared glass samples is less covalent due to the high values of Dq, B, and C. While the crystal field (Dq) and Racah parameters (B and C) decreased with an increase in Sm3+ contents, the crystal field strength (Dq/B) increased from 7.87 to 7.89. The observed trend affirmed the attenuation of the ionic nature (increase in the covalency) of the Sm–O bond in the glass host. The observed less covalent nature of Sm–O bond was complemented further by the negative values (–0.7444, –0.9018, –0.8821, and –0.8821 for GS0.5, GS1.0, GS1.5, and GS2.0, respectively) of the evaluated bonding parameters of all the glass samples. The prepared glass samples have the required features for laser applications.

About the Authors

S. B. Muhammad
Federal University Gusau
Nigeria

Department of Physics

Zamfara State



I. Abdullahi
Federal University Gusau
Nigeria

Department of Physics

Zamfara State



H. I. Muhammad
Federal University Gusau
Nigeria

Department of Physics

Zamfara State



Y. Usman
Federal University Gusau
Nigeria

Department of Physics

Zamfara State



References

1. S. Balaji, P. A. Azeem, R. R. Reddy, Phys. B, 394, 62–68 (2007).

2. A. I. Yenzhyieuski, M. V. Bogdanovich, G. I. Ryabtsev, V. V. Suprun, A. V. Grigor’ev, A. G. Ryabtsev, M. A. Shchemelev, J. Appl. Spectrosc., 76, 505–510 (2009).

3. J. H. Choi, J. Appl. Spectr., 82, 360–366 (2015).

4. G. Lakshminarayana, M. K. Kawa, S. O. Baki, A. Lira, U. Caldino, I. V. Kityk, Opt. Mater. (Amst.), 72, 380–391 (2017).

5. I. I. Kindrat, B. V. Padlyak, R. Lisiecki, Opt. Mater. (Amst.), 49, 241–248 (2015).

6. V. Uma, M. Vijayakumar, K. Marimuthu, G. Muralidharan, J. Mol. Struct., 1151, 266–276 (2018).

7. P. Van Do, V. Phi, V. Xuan, L. Xuan, L. Duy, T. Ngoc, Opt. Mater. (Amst.), 55, 62–67 (2016).

8. K. Annapoorani, K. Maheshvaran, S. Arunkumar, N. S. Murthy, K. Marimuthu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 135, 1090–1098 (2014).

9. K. Annapoorani, N. S. Murthy, T. R. Ravindran, K. Marimuthu, J. Lumin., 171, 19–26 (2016).

10. P. J. van Der Put, The Inorganic Chemistry of Materials, Springer, New York (1998).

11. K. Bhargavi, M. S. Reddy, P. R. Rao, N. N. Rao, M. S. Rao, V. R. Kumar, N. Veeraiah, Mater. Res. Bull., 47, 267–273 (2012).

12. B. M. Walsh, Judd-Ofelt Theory: Principles and Practices, Springer, The Netherlands (2006).

13. A. Bartecki, K. Kurzak, Pol. Des Sci., 29, 299–305 (1982).

14. Y. A. Tanko, S. K. Ghoshal, M. R. Sahar, J. Mol. Struct., 1117, 64–68 (2016).

15. A. M. Hamza, M. K. Halimah, F. D. Muhammad, K. T. Chan, J. Lumin., 207, 497–506 (2019).

16. V. S. Sastri, J.-C. G. Bunzli, V. R. Rao, G. V. S. Rayudu, J. R. Perumareddi, Modern Aspects of Rare Earths and their Complexes, Elsevier B. V., Amsterdam (2003).

17. Z. G. Mazurak, M. Czaja, Opt. Mater. (Amst.), 33, 506–510 (2011).

18. G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, E. K. Mamadzhanova, A. A. Sukhodola, A. Paleari, P. D. Sarkisov, A. N. Shimko, Mater. Chem. Phys.,137, 48–54 (2012).

19. G. E. Malashkevich, A. N. Shimko, A. P. Stupak, I. V. Prusova, K. N. Nischev, V. M. Kyashkin, A. A. Kornienko, E. B. Dunina, A. V. Semchenko, I.I. Sergeev, J. Appl. Spectrosc., 86, 584–589 (2019).

20. M. A. Marzouk, S. M. Abo-Naf, H. A. Zayed, N. S. Hassan, J. Appl. Spectrosc., 84, 162–169 (2017).

21. I. Hossain, N. K. Shekaili, H. Wagiran, J. Appl. Spectrosc., 82, 149–152 (2015).

22. K. H. S. Shaaban, A. A. El-maaref, M. Abdelawwad, Y. B. Saddeek, H. Wilke, H. Hillmer, J. Lumin., 196, 477–484 (2018).

23. W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 49, 4424–4442 (1968).

24. S. Jain, R. Singh, J. Chem. Pharm. Res., 3, 1–5 (2011).

25. P. Srivastava, J. Appl. Spectrosc., 84, 521–528 (2017).

26. S. Sailaja, C. Nageswara Raju, C. Adinarayana Reddy, B. Deva Prasad Raju, Y. D. Jho, B. Sudhakar Reddy, J. Mol. Struct., 1038, 29–34 (2013).

27. I. Abdullahi, S. Hashim, S.K. Ghoshal, J. Lumin., 216, 116686 (2019).

28. F. Nawaz, M. R. Sahar, S. K. Ghoshal, A. Awang, R. J. Amjad, J. Lumin., 2014, 90–96 (2014).

29. I. Mohammed, S. K. Ghoshal, R. Ari, S. Aishah, J. Lumin., 216, 116713 (2019).

30. S. S. Sastry, B. R. V. Rao, T. Vishwam, Indian J. Phys., 89, 73–80 (2014).

31. A. M. S. Farouk, Y. M. Abo-Zeid, M. A. Khaled, I. Kashif, J. Mater. Sci. Mater. Electron., 6, 393–396 (1995).

32. Y. Chen, Z. Yang, Q. Wang, M. Rong, Q. Zhou, Z. Wang, Dalt. Trans., 48, 10901–10906 (2019).

33. Y. Liu, T. Wang, X. Zhang, C. Cao, L. Yang, Y. Huang, S. Liao, J. Mater. Sci. Mater. Electron., 30, 1870–1877 (2019).

34. M. A. Hassan, F. M. Ebrahim, M. G. Moustafa, Z. M. A. El-fattah, M. M. El-okr, J. Non. Cryst. Solids, 515, 157–164 (2019).

35. I. Abdullahi, S. Hashim, S. K. Ghoshal, A. U. Ahmad, Mater. Chem. Phys., 247, 122862 (2020).

36. W. F. James, Handbook of Optical Materials, CRC Press, New York (2003).


Review

For citations:


Muhammad S.B., Abdullahi I., Muhammad H.I., Usman Y. Ligand Field Parameters of Samarium Activated Alumino-Borate Based Glasses. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):806.

Views: 88


ISSN 0514-7506 (Print)