Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Wood Recogition Based on Terahertz Spectrum and Hyperspectral Technology

Abstract

Terahertz time-domain spectroscopy (THz-TDS) and hyperspectral technology were used for wood recognition. As wood is a valuable national resource, it is essential to utilize it efficiently and reasonably by classifying the species of wood. To accomplish this, ten distinct species of wood, including five types of softwood (Pinus sylvestris, Pinus tabulaeformis, Pinus massoniana, Larix gmelinii, and Pinus koraiensis) and five types of hardwood (Xylosma racemosum, Populus davidiana, Fraxinus rhynchophylla, Betula platyphylla, and Tilia tuan Szyszyl), were selected as experimental samples. Four hundred groups of data for terahertz absorption coefficient spectra and four hundred groups of hyperspectral data were acquired using THz-TDS and hyperspectral technology, respectively, and then examined for their spectral features. Three spectral preprocessing techniques, including the Savitsky–Golay smoothing algorithm, standard normal variable transformation, and multivariate scattering correction, were employed to preprocess the spectrum. Support vector machine recognition models were then created to compare and analyze the effects of recognition. The results demonstrated that both THz-TDS and hyperspectral approaches could successfully identify five different species of hardwood from various families and genera, with the highest accuracy rates of 92 and 94%, respectively. THz-TDS achieved a 92% recognition rate for five different species of softwood from the same family, indicating good recognition effects, while hyperspectral technology did not achieve such results.

About the Authors

X. D. Yun
School of Technology, Beijing Forestry University; Key Lab of State Forestry and Grassland Administration for Forestry Equipment and Automation; Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University
China

Xing Da Yun

Beijing



Yu. Wang
School of Technology, Beijing Forestry University; Key Lab of State Forestry and Grassland Administration for Forestry Equipment and Automation; Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University
China

Yuan Wang

Beijing



W. J. Ma
School of Technology, Beijing Forestry University; Key Lab of State Forestry and Grassland Administration for Forestry Equipment and Automation; Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University
China

Wen Jin Ma

Beijing



L. Zhao
School of Technology, Beijing Forestry University; Key Lab of State Forestry and Grassland Administration for Forestry Equipment and Automation; Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University
China

Lei Zhao

Beijing



References

1. E. A. Wheeler, P. Baas, IAWA J., 19, No. 3, 241–264 (1998).

2. M. Yu, K. Liu, L. Zhou, L. Zhao, S. Q. Liu, Holzforschung, 70, No. 2, 127–136 (2016).

3. L. Pang, J. Xiao, J. J. Ma, L. Yan, J. For. Res., 32, No. 2, 461–469 (2021).

4. V. Shenbaga Priya, D. Ramyachitra, Cluster. Comp., 22, No. S6, 13569–13581 (2019).

5. G. J. Qiu, E. L. Lu, H. Z. Lu, S. Xu, F. G. Zeng, Q. Shui, Sensors, 18, No. 4, 1010–1025 (2018).

6. J. Sun, Y. C. Zhang, H. P. Mao, S. L. Cong, X. H. Wu, P. Wang, Optik, 153, 156–163 (2018).

7. S. Nisgoski, A. A. de Oliveira, G. I. B. de Muñiz, Wood. Sci. Technol., 51, No. 4, 929–942 (2017).

8. G. Y. Shi, J. Cao, C. Li, Y. L. Liang, J. For. Res., 31, No. 3, 1061–1069 (2020).

9. L. Yu, Y. L. Liang, Y. Z. Zhang, J. Cao, J. For. Res., 31, No. 3, 1053–1060 (2020).

10. M. Peccianti, R. Fastampa, A. M. Conte, O. Pulci, C. Violante, J. Łojewska, M. Clerici, R. Morandotti, M. Missori, Phys. Rev. Appl., 7, No. 6, 064019 (2017).

11. T. Trafela, M. Mizuno, K. Fukunaga, M. Strlič, Appl. Phys. A Mater., 111, No. 1, 83–90 (2013).

12. F. S. Vieira, C. Pasquini, Anal. Chem., 86, No. 8, 3780–3786 (2014).

13. M. Naftaly, R. E. Miles, IEEE, 95, No. 8, 1658–1665 (2007).

14. K. Okada, Q. Cassar, H. Murakami, G. MacGrogan, J. P. Guillet, P. Mounaix, M. Tonouchi, K. Serita, Photonics, 8, No. 5, 151 (2021).

15. F. F. Qu, L. Lin, Y. He, P. C. Nie, C. Y. Cai, T. Dong, Y. Pan, Y. Tang, S. M. Luo, Molecules, 23, No. 7, 1607 (2018).

16. S. Tsuzuki, N. Kuzuu, H. Horikoshi, K. Saito, K. Yamamoto, M. Tani, Appl. Phys. Express, 8, No. 7, 072402 (2015).

17. H. Wang, Y. Horikawa, S. Tsuchikawa, T. Inagaki, Cellulose, 27, No. 17, 9767–9777 (2020).

18. T. Inagaki, I. D. Hartley, S. Tsuchikawa, M. Reid, Holzforschung, 68, No. 1, 61–68 (2014).

19. K. Krügener, S. Sommer, E. Stübling, R. Jachim, M. Koch, W. Viöl, J. Infrared. Millim. Terahertz. Waves, 40, No. 7, 770–774 (2019).

20. M. Reid, R. Fedosejevs, Appl. Opt., 45, No. 12, 2766–2772 (2006).

21. S. Tanaka, K. Shiraga, Y. Ogawa, Y. Fujii, S. Okumura, J. Wood. Sci., 60, No. 2, 111–116 (2014).

22. Y. Wang, S. She, N. Zhou, P. X. Jia, J. G. Zhang, Spectrosc. Spectr. Anal., 39, No. 9, 2719–2724 (2019).

23. A. Subasi, Comp. Biol. Med., 43, No. 5, 576–586 (2013).

24. R. Pouteau, A. Collin, Remote Sens. Lett., 4, No. 7, 686–695 (2013).

25. C. M. Salvador, C. C. K. Chou, Atm. Environ., 95, 288–295 (2014).

26. J. W. Zhang, W. L. Song, B. Jiang, M. B. Li, J. For. Res., 29, No. 2, 557–564 (2018).

27. Y. Wang, S. She, N. Zhou, J. G. Zhang, H. Yan, W. B. Li, Bioresources, 14, No. 1, 1033–1048 (2019).

28. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, J. Opt. Soc. Am. A, 18, No. 7, 1562–1571 (2001).

29. L. Duvillaret, F. Garet, J. L. Coutaz, Appl. Opt., 38, No. 2, 409–415 (1999).

30. M. Kamruzzaman, Y. Makino, S. Oshita, J. Food. Eng., 170, 8–15 (2016).


Review

For citations:


Yun X.D., Wang Yu., Ma W.J., Zhao L. Wood Recogition Based on Terahertz Spectrum and Hyperspectral Technology. Zhurnal Prikladnoii Spektroskopii. 2023;90(6):976.

Views: 100


ISSN 0514-7506 (Print)