Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Super Sub-Nyquist Single-Pixel Terahertz Imaging Using Hadamard Basis

Abstract

We present a super sub-Nyquist Hadamard single-pixel THz imaging system in which the THz waves are modulated by a digital micromirror device and a laser driver. Spatial coding of the THz radiation is performed using the cake-cutting (CC)-order Hadamard basis. THz images are reconstructed from a series of coding sequences of the measurement intensity. We prove that with the use of super sub-Nyquist sampling, single-pixel THz imaging with 87% fidelity and a signal-to-noise ratio of more than 23 dB can be achieved using 10% of the CC-order Hadamard basis patterns. The total variation regularization algorithm is shown to have higher robustness to noise than the Hadamard transform and thus offers a good technical solution for single-pixel THz imaging.

About the Authors

J. Guo
School of Information Engineering, Southwest University of Science and Technology; TianFu college of Southwestern University of Finance and Economics
China

Mianyang



Q. Ch. Liu
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang, Chengdu



H. Deng
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang, Chengdu



G. L. Li
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang, Chengdu



L. P. Shang
School of Information Engineering, Southwest University of Science and Technology; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology
China

Mianyang, Chengdu



References

1. P. Hillger, J. Grzyb, R. Jain, U. R. Pfeiffer, IEEE THz Sci. Tech., 9, No. 1, 1–19 (2019).

2. Q. Wang, L. Xie, Y. Ying, Appl. Spectrosc. Rev., 57, No. 3, 249–264 (2021).

3. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Joerdens, T. Hochrein, M. Koch, Appl. Optics, 49, No. 19, E48–E57 (2010).

4. S. C. Zhong, Front Mech. Eng., 14, No. 3, 273–281 (2019).

5. M. Danciu, T. Alexa-Stratulat, C. Stefanescu, G. Dodi, B. I. Tamba, C. T. Mihai, G. D. Stanciu, A. Luca, I. A. Spiridon, L. B. Ungureanu, V. Ianole, I. Ciortescu, C. Mihai, G. Stefanescu, I. Chirila, R. Ciobanu, V. L. Drug, Mater., 12, No. 9, 16 (2019).

6. X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, Y. Luo, Trends Biotechnol., 34, No. 10, 810–824 (2016).

7. J. Dong, A. Locquet, M. Melis, D. S. Citrin, Sci. Rep., 7 (2017).

8. E. Abraham, A. Younus, J. C. Delagnes, P. Mounaix, Appl. Phys. A, 100, No. 3, 585–590 (2010).

9. E. J. Candes, J. Romberg, T. Tao, IEEE Inform. Theory, 52, No. 2, 489–509 (2006).

10. E. J. Candes, T. Tao, IEEE Inform. Theory, 52, No. 12, 5406–5425 (2006).

11. D. L. Donoho, IEEE Inform. Theory, 52, No. 4, 1289–1306 (2006).

12. H. Shapiro, J. I. Jeffrey, Phys. Rev. A, 78, No. 6, 061802 (2008).

13. N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. C. Raptis, L. Spinoulas, A. K. Katsaggelos, Opt Eng., 51, No. 9, 091614(1–5) (2012).

14. S. Busch, B. Scherger, M. Scheller, M. Koch, Opt. Lett., 37, No. 8, 1391–1393 (2012).

15. M. I. B. Shams, L. Liu, S. Rahman, L. J. Cheng, P. Fay, Z. Jiang, J. Qayyum, H. G. Xing, Electron Lett., 50, No. 11, 801–803 (2014).

16. S. Augustin, J. Hieronymus, P. Jung, H. W. Hübers, J. Infrared Millim., 36, No. 5, 496–512 (2015).

17. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, E. Hendry, Sci. Adv., 2, No. 6 (2016).

18. R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, E. Hendry, Optica, 4, No. 8, 989–996 (2017).

19. Y. Lu, X.-K. Wang, W.-F. Sun, S.-F. Feng, J.-S. Ye, P. Han, Y. Zhang, IEEE THz Sci. Tech., 10, No. 5, 495–501 (2020).

20. L. Zanotto, R. Piccoli, J. Dong, D. Caraffini, R. Morandotti, L. Razzari, Opt. Express, 28, No. 3, 3795–3802 (2020).

21. T. A. Lu, Z. Qiu, Z. Zhang, J. Zhong, Opt. Laser Eng., 134 (2020).

22. P. G. Vaz, D. Amaral, L. F. Requicha Ferreira, M. Morgado, J. Cardoso, Opt. Express, 28, No. 8, 11666–11681 (2020).

23. M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, N. Radwell, Sci. Rep., 7, No. 1, 3464 (2017).

24. W. K. Yu, Sensors (Basel), 19, No. 19, 4122 (2019).

25. X. Yu, R. I. Stantchev, F. Yang, E. Pickwell-MacPherson, Sci. Rep., 10, No. 1, 9338 (2020).

26. L. Lopez-Garcia, W. Cruz-Santos, A. Garcia-Arellano, P. Filio-Aguilar, J. A. Cisneros-Martinez, R. Ramos-Garcia, Opt. Express, 30, No. 8, 13714–13732 (2022).

27. M.-F. Li, L. Yan, R. Yang, Y.-X. Liu, Acta Phys. Sin., 68, No. 6, 064202 (2019).


Review

For citations:


Guo J., Liu Q.Ch., Deng H., Li G.L., Shang L.P. Super Sub-Nyquist Single-Pixel Terahertz Imaging Using Hadamard Basis. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):811.

Views: 76


ISSN 0514-7506 (Print)