![Open Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/opened.png)
![Restricted Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/closed.png)
Applying Serum Raman and Fluorescence Spectra to Liver Cancer Diagnosis
Abstract
Liver cancer and healthy individual serum samples were compared based on their spectral features acquired by Raman and fluorescence spectroscopy to initially establish spectral features that can be considered spectral markers for liver cancer diagnosis. Intensity differences of the characteristic peaks of carotenes, proteins, and lipids in the Raman spectra were clearly observed in liver cancer patient serum samples compared to those of normal human serum samples. The changes in the serum fluorescence profiles of liver cancer patients were also analyzed. To probe the capacity and contrast of Raman spectroscopy as an analytical implement for the early diagnosis of liver cancer, principal component analysis was used to analyze the Raman spectra of liver cancer patients and healthy individuals. Furthermore, partial least squaresdiscriminant analysis was performed to compare the diagnostic performances of Raman spectroscopy for the classification of disease samples and healthy samples. Compared with existing diagnostic techniques, the Raman spectroscopy technique has many advantages such as extremely low sample requirements, ease of use, and ideal screening procedures. Thus, Raman spectroscopy has great potential for development as a powerful tool for distinguishing between healthy and liver cancer serum samples.
Keywords
About the Authors
Quanhong OuChina
Yunnan Key Laboratory of Opto-electronic Information Technology
Kunming
Xien Yang
China
Yunnan Key Laboratory of Opto-electronic Information Technology
Kunming
Weiye Yang
China
Yunnan Key Laboratory of Opto-electronic Information Technology
Kunming
Liqin Jiang
China
Yunnan Key Laboratory of Opto-electronic Information Technology
Kunming
Kai Qian
China
Department of Thoracic Surgery.
Kunming
Youming Shi
China
Qujing
Gang Liu
China
Yunnan Key Laboratory of Opto-electronic Information Technology
Kunming
References
1. R. L. Siegel, K. D. Miller, A. Jemal, Cancer J. Clin., 70, No. 1, 7–30 (2020), doi: 10.3322/caac.21590.
2. C. P. Wild, E. Weiderpass, B. W. Stewart, World Cancer Report: Cancer Research for Cancer Prevention, Lyon, France (2020), https://www.iarc.who.int/featured-news/new-world-cancer-report/.
3. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Cancer J. Clin., 65, No. 2, 87–108 (2015), doi: 10.3322/caac.21262.
4. D. Anwanwan, S. K. Singh, S. Singh, V. Saikam, R. Singh, Biochim. Biophys. Acta (BBA) – Rev. Cancer, 1873, No. 1, 188314 (2020), doi: 10.1016/j.bbcan.2019.188314.
5. J. Hartke, M. Johnson, M. Ghabril, Seminars in Diagnostic Pathology, 34, No. 2, 153–159 (2017), doi: 10.1053/j.semdp.2016.12.011.
6. X. Yang, Q. Ou, W. Yang, Y. Shi, G. Liu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 263, 120181 (2021), doi: 10.1016/j.saa.2021.120181.
7. K. Zhang, C. Hao, B. Man, C. Zhang, C. Yang, M. Liu, Q. Peng, C. Chen, Vib. Spectrosc., 98, 82–87 (2018), doi: 10.1016/j.vibspec.2018.07.010.
8. K. Liu, S. Jin, Z. Song, L. Jiang, L. Ma, Z. Zhang, Vib. Spectrosc., 100, 177–184 (2019), doi: 10.1016/j.vibspec.2018.12.007.
9. A. M. Lennon, A. H. Buchanan, I. Kinde, A. Warren, A. Honushefsky, A. T. Cohain, D. H. Ledbetter, F. Sanfilippo, K. Sheridan, D. Rosica, C. S. Adonizio, H. J. Hwang, K. Lahouel, J. D. Cohen, C. Douville, A. A. Patel, L. N. Hagmann, D. D. Rolston, N. Malani, S. Zhou, C. Bettegowda, D. L. Diehl, B. Urban, C. D. Still, L. Kann, J. I. Woods, Z. M. Salvati, J. Vadakara, R. Leeming, P. Bhattacharya, C. Walter, A. Parker, C. Lengauer, A. Klein, C. Tomasetti, E. K. Fishman, R. H. Hruban, K. W. Kinzler, B. Vogelstein, N. Papadopoulo, Science, 369, No. 6499, eabb9601 (2020), doi: 10.1126/science.abb9601.
10. Z. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev., 42, No. 5, 493–541 (2007), doi: 10.1080/05704920701551530.
11. T. Bhattacharjee, G. Maru, A. Ingle, C. M. Krishna, J. Raman Spectrosc., 46, No. 11, 1053–1061 (2015), doi: org/10.1002/jrs.4739.
12. M. Paraskevaidi, K. M. Ashton, H. F. Stringfellow, N. J. Wood, P. J. Keating, A. W. Rowbottom, P. L. Martin-Hirsch, F. L. Martin, Talanta, 189, 281–288 (2018), doi: 10.1016/j.talanta.2018.06.084.
13. W. Wen, Y. Meng, J. Xiao, P. Zhang, H. Zhang, J. Molec. Struct., 1038, 35–39 (2013), doi: 10.1016/j.molstruc.2013.01.051.
14. A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, K. Fujita, Nature Protocols, 8, 677–692 (2013), https://doi.org/10.1038/nprot.2013.030.
15. S. Pal, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J.Yang, H. T. Hsu, A. Oseledchyk, J. Mondal, S. Zou, M. F. Kircher, Nat. Comm., 10, 1926 (2019), doi: 10.1038/s41467-019-09173-2.
16. S. J. Harder, M. Isabelle, L. Devorkin, J. Smazynski, W. Beckham, A. G. Brolo, J. J. Lum, A. Jirasek, Sci. Rep., 6, 21006 (2016), https://doi.org/10.1038/srep21006.
17. S. Yan, S. Wang, J. Qiu, M. Li, D. Li, D. Xu, D. Li, Q. Liu, Talanta, 226,122195 (2021), doi: 10.1016/j.talanta.2021.122195.
18. C. Zheng, S. Qing, J. Wang, G. Lü, H. Li, X. Lü, C. Ma, J. Tang, X. Yue, Photodiagnosis and Photodynamic Therapy, 27, 156–161 (2019), doi: 10.1016/j.pdpdt.2019.05.029.
19. H. Wang, C. Chen, D. Tong, C. Chen, R. Gao, H. Han, X. Lv, Photodiagnosis and Photodynamic Therapy, 34, 102241 (2021), doi: 10.1016/j.pdpdt.2021.102241.
20. M. Kemmlera, E. Rodner, P. Rösch, J. Popp, J. Denzler, Anal. Chim. Acta, 794, 29–37 (2013), doi: 10.1016/j.aca.2013.07.051.
21. M. Cordovana, N. Mauder, M. Kostrzewa, A. Wille,S. Rojak, R. M. Hagen, S. Ambretti, S. Pongolini, L. Soliani, U. S. Justesen, H. M. Holt, O. Join-Lambert, S. L. Hello, M. Auzou, A. C. Veloo, J. May, H. Frickmann, D. Dekker, Microorganisms, 9, No. 4, 853 (2021), doi: 10.3390/microorganisms9040853.
22. H. F. Nargis, H. Nawaz, H. N. Bhatti, K. Jilani, M. Saleem, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 246, 119034 (2021), doi: 10.1016/j.saa.2020.119034.
23. M. Bahreini, A. Hosseinzadegan, A. Rashidi, S. R. Miri, H. R. Mirzaei, P. Hajian, Talanta, 204, 826–832 (2019), doi: 10.1016/j.talanta.2019.06.068.
24. J. D. Meutter, E. Goormaghtigh, Anal. Chem., 93, No. 8, 3733–3741 (2021), doi: 10.1021/acs.analchem.0c03677.
25. L. Xia, J. Lu, Z. Chen, X. Cui, S. Chen, D. Pei, Nanomedicine: Nanotechnology, Biology, and Medicine, 32 ,102328 (2021), doi: 10.1016/j.nano.2020.102328.
26. K. Zhang, X. Liu, B. Man, C. Zhang, M. Liu, Y. Zhang, L. Liu, C. Chen, Biomed. Opt. Express, 9, No. 9, 4345–4358 (2018), doi: 10.1364/BOE.9.004345.
27. R. Xiao, X. Zhang, Z. Rong, B. Xiu, X. Yang, C. Wang, W. Hao, Q. Zhang, Z. Liu, C. Duan, K. Zhao, X. Guo, T. Fan, Y. Zhao, H. Johnson, Y. Huang, X. Feng, X. Xu, H. Zhang, S. Wang, Nanomedicine: Nanotechnology, Biology and Medicine, 12, No. 8, 2475–2484 (2016), doi: 10.1016/j.nano.2016.07.014.
28. X. Zheng, G. Wu, G. Lv, L. Yin, B. Luo, X. Lv, C. Chen, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 247, 119083 (2021), doi: 10.1016/j.saa.2020.119083.
29. R. Ullah, S. Khan, F. Farman, M. Bilal, C. Krafft, S. Shahzad, Biomed. Opt. Express, 10, No. 2, 600–609 (2019), doi: 10.1364/BOE.10.000600.
30. S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, A. Gift, J. Raman Spectrosc., 36, No. 3, 208–212 (2005), doi: 10.1002/jrs.1277.
31. C. J. Frank, R. L. Mccreery, D. C. B. Redd, Anal. Chem., 67, No. 5, 777–783 (1995), doi: 10.1021/ac00101a001.
32. J. W. Chan, D. S. Taylor, T. Zwerding, S. M. Lane, K. Ihara, T. Huser, Biophys. J., 90, No. 2, 648–656 (2006), doi: 10.1529/biophysj.105.066761.
33. R. J. Lakshmi, V. B. Kartha, C. M. Krishna, J. G. R. Solomon, G. Ullas, P. U. Devi, Radiat. Res., 157, No. 2, 175–182 (2002), doi: 10.1667/0033-7587(2002)157[0175:trsfts]2.0.co;2.
34. G. J. Puppels, H. S. P. Garritsen, J. A. Kummer, J. Greve, Cytometry, 14, No. 3, 251–256 (1993), doi: 10.1002/cyto.990140303.
35. A. Mahadevan-Jansen, R. Richards-Kortum, Proc. 19th Annual Int. Conf. IEEE Eng. Med. and Biology Soc. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No. 97CH36136), 6, 2722–2728 (1997), doi: 10.1109/IEMBS.1997.756895.
36. N. Stone, C. Kendall, J. Smith, P. Crow, H. Barr, Faraday Disc., 126, 141–157 (2004), doi: 10.1039/B304992B.
37. N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, J. Raman Spectrosc., 33, No. 7, 564–573 (2002), doi: 10.1002/jrs.882.
38. L. Silveira Jr., S. Sathaiah, R. A. Zângaro, M. T. T. Pacheco, M. C. Chavantes, C. A. G. Pasqualucci, Lasers Surg. Med., 30, No. 4, 290–297 (2002), doi: 10.1002/lsm.10053.
39. R. K. Dukor, Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd. (2006), doi: 10.1002/0470027320.s8107.
40. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, C. M. Krishna, Biopolymers, 81, No. 3, 179–193 (2006), doi: 10.1002/bip.20398.
41. C. Guan, X. Luo, J. Lu, Z. Li, J. Optoelectron.•Laser, 30, No. 2, 221–226 (2019), doi: 10.16136/j.joel.2019.02.0209.
42. J. Yu, J. Meng, Y. Li, J. Ma, R. Zheng, Spectrosc. Spectr. Anal., 24, No. 8, 981–983 (2004), doi: 10.3321/j.issn:1000-0593.2004.08.024.
43. J. R. Aibani, J. Fluorescence, 24, 93–104 (2014), doi: 10.1007/s10895-013-1277-8.
44. V. Masilamani, K. Al-Zhrani, M. Al-Salhi, A. Al-Diab, M. Al-Ageily, J. Lumin., 109, No. 3-4, 143–154 (2004), doi: 10.1016/j.jlumin.2004.02.001.
45. S. Scheiner, T. Kar, J. Pattanayak, J. Am. Chem. Soc., 124, No. 44, 13257–13264 (2002), doi: 10.1021/ja027200q.
46. J. Joseph, E. D. Jemmis, J. Am. Chem. Soc., 129, No. 15, 4620–4632 (2007), doi: 10.1021/ja067545z.
47. V. Masilamani, M. S. AlSalhi, T. Vijmasi, K. Govindarajan, R. R. Rai, M. Atif, S. Prasad, A. Aldwayyan, J. Biomed. Opt., 17, No. 9, 098001 (2012), doi: 10.1117/1.JBO.17.9.098001.
48. A. C. Croce, G. Bottiroli, Eur. J. Histochem., 58, No. 4, 2461 (2014), doi: 10.4081/ejh.2014.2461.
Review
For citations:
Ou Q., Yang X., Yang W., Jiang L., Qian K., Shi Y., Liu G. Applying Serum Raman and Fluorescence Spectra to Liver Cancer Diagnosis. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):814.