Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Applying Serum Raman and Fluorescence Spectra to Liver Cancer Diagnosis

Abstract

Liver cancer and healthy individual serum samples were compared based on their spectral features acquired by Raman and fluorescence spectroscopy to initially establish spectral features that can be considered spectral markers for liver cancer diagnosis. Intensity differences of the characteristic peaks of carotenes, proteins, and lipids in the Raman spectra were clearly observed in liver cancer patient serum samples compared to those of normal human serum samples. The changes in the serum fluorescence profiles of liver cancer patients were also analyzed. To probe the capacity and contrast of Raman spectroscopy as an analytical implement for the early diagnosis of liver cancer, principal component analysis was used to analyze the Raman spectra of liver cancer patients and healthy individuals. Furthermore, partial least squaresdiscriminant analysis was performed to compare the diagnostic performances of Raman spectroscopy for the classification of disease samples and healthy samples. Compared with existing diagnostic techniques, the Raman spectroscopy technique has many advantages such as extremely low sample requirements, ease of use, and ideal screening procedures. Thus, Raman spectroscopy has great potential for development as a powerful tool for distinguishing between healthy and liver cancer serum samples.

About the Authors

Quanhong Ou
School of Physics and Electronic Information at Yunnan Normal University
China

Yunnan Key Laboratory of Opto-electronic Information Technology

Kunming



Xien Yang
School of Physics and Electronic Information at Yunnan Normal University
China

Yunnan Key Laboratory of Opto-electronic Information Technology

Kunming



Weiye Yang
School of Physics and Electronic Information at Yunnan Normal University
China

Yunnan Key Laboratory of Opto-electronic Information Technology

Kunming



Liqin Jiang
School of Physics and Electronic Information at Yunnan Normal University
China

Yunnan Key Laboratory of Opto-electronic Information Technology

Kunming



Kai Qian
The First People’s Hospital of Yunnan Province
China

Department of Thoracic Surgery.

Kunming



Youming Shi
School of Physics and Electronic Engineering at Qujing Normal University
China

Qujing



Gang Liu
School of Physics and Electronic Information at Yunnan Normal University
China

Yunnan Key Laboratory of Opto-electronic Information Technology

Kunming



References

1. R. L. Siegel, K. D. Miller, A. Jemal, Cancer J. Clin., 70, No. 1, 7–30 (2020), doi: 10.3322/caac.21590.

2. C. P. Wild, E. Weiderpass, B. W. Stewart, World Cancer Report: Cancer Research for Cancer Prevention, Lyon, France (2020), https://www.iarc.who.int/featured-news/new-world-cancer-report/.

3. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Cancer J. Clin., 65, No. 2, 87–108 (2015), doi: 10.3322/caac.21262.

4. D. Anwanwan, S. K. Singh, S. Singh, V. Saikam, R. Singh, Biochim. Biophys. Acta (BBA) – Rev. Cancer, 1873, No. 1, 188314 (2020), doi: 10.1016/j.bbcan.2019.188314.

5. J. Hartke, M. Johnson, M. Ghabril, Seminars in Diagnostic Pathology, 34, No. 2, 153–159 (2017), doi: 10.1053/j.semdp.2016.12.011.

6. X. Yang, Q. Ou, W. Yang, Y. Shi, G. Liu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 263, 120181 (2021), doi: 10.1016/j.saa.2021.120181.

7. K. Zhang, C. Hao, B. Man, C. Zhang, C. Yang, M. Liu, Q. Peng, C. Chen, Vib. Spectrosc., 98, 82–87 (2018), doi: 10.1016/j.vibspec.2018.07.010.

8. K. Liu, S. Jin, Z. Song, L. Jiang, L. Ma, Z. Zhang, Vib. Spectrosc., 100, 177–184 (2019), doi: 10.1016/j.vibspec.2018.12.007.

9. A. M. Lennon, A. H. Buchanan, I. Kinde, A. Warren, A. Honushefsky, A. T. Cohain, D. H. Ledbetter, F. Sanfilippo, K. Sheridan, D. Rosica, C. S. Adonizio, H. J. Hwang, K. Lahouel, J. D. Cohen, C. Douville, A. A. Patel, L. N. Hagmann, D. D. Rolston, N. Malani, S. Zhou, C. Bettegowda, D. L. Diehl, B. Urban, C. D. Still, L. Kann, J. I. Woods, Z. M. Salvati, J. Vadakara, R. Leeming, P. Bhattacharya, C. Walter, A. Parker, C. Lengauer, A. Klein, C. Tomasetti, E. K. Fishman, R. H. Hruban, K. W. Kinzler, B. Vogelstein, N. Papadopoulo, Science, 369, No. 6499, eabb9601 (2020), doi: 10.1126/science.abb9601.

10. Z. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev., 42, No. 5, 493–541 (2007), doi: 10.1080/05704920701551530.

11. T. Bhattacharjee, G. Maru, A. Ingle, C. M. Krishna, J. Raman Spectrosc., 46, No. 11, 1053–1061 (2015), doi: org/10.1002/jrs.4739.

12. M. Paraskevaidi, K. M. Ashton, H. F. Stringfellow, N. J. Wood, P. J. Keating, A. W. Rowbottom, P. L. Martin-Hirsch, F. L. Martin, Talanta, 189, 281–288 (2018), doi: 10.1016/j.talanta.2018.06.084.

13. W. Wen, Y. Meng, J. Xiao, P. Zhang, H. Zhang, J. Molec. Struct., 1038, 35–39 (2013), doi: 10.1016/j.molstruc.2013.01.051.

14. A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, K. Fujita, Nature Protocols, 8, 677–692 (2013), https://doi.org/10.1038/nprot.2013.030.

15. S. Pal, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J.Yang, H. T. Hsu, A. Oseledchyk, J. Mondal, S. Zou, M. F. Kircher, Nat. Comm., 10, 1926 (2019), doi: 10.1038/s41467-019-09173-2.

16. S. J. Harder, M. Isabelle, L. Devorkin, J. Smazynski, W. Beckham, A. G. Brolo, J. J. Lum, A. Jirasek, Sci. Rep., 6, 21006 (2016), https://doi.org/10.1038/srep21006.

17. S. Yan, S. Wang, J. Qiu, M. Li, D. Li, D. Xu, D. Li, Q. Liu, Talanta, 226,122195 (2021), doi: 10.1016/j.talanta.2021.122195.

18. C. Zheng, S. Qing, J. Wang, G. Lü, H. Li, X. Lü, C. Ma, J. Tang, X. Yue, Photodiagnosis and Photodynamic Therapy, 27, 156–161 (2019), doi: 10.1016/j.pdpdt.2019.05.029.

19. H. Wang, C. Chen, D. Tong, C. Chen, R. Gao, H. Han, X. Lv, Photodiagnosis and Photodynamic Therapy, 34, 102241 (2021), doi: 10.1016/j.pdpdt.2021.102241.

20. M. Kemmlera, E. Rodner, P. Rösch, J. Popp, J. Denzler, Anal. Chim. Acta, 794, 29–37 (2013), doi: 10.1016/j.aca.2013.07.051.

21. M. Cordovana, N. Mauder, M. Kostrzewa, A. Wille,S. Rojak, R. M. Hagen, S. Ambretti, S. Pongolini, L. Soliani, U. S. Justesen, H. M. Holt, O. Join-Lambert, S. L. Hello, M. Auzou, A. C. Veloo, J. May, H. Frickmann, D. Dekker, Microorganisms, 9, No. 4, 853 (2021), doi: 10.3390/microorganisms9040853.

22. H. F. Nargis, H. Nawaz, H. N. Bhatti, K. Jilani, M. Saleem, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 246, 119034 (2021), doi: 10.1016/j.saa.2020.119034.

23. M. Bahreini, A. Hosseinzadegan, A. Rashidi, S. R. Miri, H. R. Mirzaei, P. Hajian, Talanta, 204, 826–832 (2019), doi: 10.1016/j.talanta.2019.06.068.

24. J. D. Meutter, E. Goormaghtigh, Anal. Chem., 93, No. 8, 3733–3741 (2021), doi: 10.1021/acs.analchem.0c03677.

25. L. Xia, J. Lu, Z. Chen, X. Cui, S. Chen, D. Pei, Nanomedicine: Nanotechnology, Biology, and Medicine, 32 ,102328 (2021), doi: 10.1016/j.nano.2020.102328.

26. K. Zhang, X. Liu, B. Man, C. Zhang, M. Liu, Y. Zhang, L. Liu, C. Chen, Biomed. Opt. Express, 9, No. 9, 4345–4358 (2018), doi: 10.1364/BOE.9.004345.

27. R. Xiao, X. Zhang, Z. Rong, B. Xiu, X. Yang, C. Wang, W. Hao, Q. Zhang, Z. Liu, C. Duan, K. Zhao, X. Guo, T. Fan, Y. Zhao, H. Johnson, Y. Huang, X. Feng, X. Xu, H. Zhang, S. Wang, Nanomedicine: Nanotechnology, Biology and Medicine, 12, No. 8, 2475–2484 (2016), doi: 10.1016/j.nano.2016.07.014.

28. X. Zheng, G. Wu, G. Lv, L. Yin, B. Luo, X. Lv, C. Chen, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 247, 119083 (2021), doi: 10.1016/j.saa.2020.119083.

29. R. Ullah, S. Khan, F. Farman, M. Bilal, C. Krafft, S. Shahzad, Biomed. Opt. Express, 10, No. 2, 600–609 (2019), doi: 10.1364/BOE.10.000600.

30. S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, A. Gift, J. Raman Spectrosc., 36, No. 3, 208–212 (2005), doi: 10.1002/jrs.1277.

31. C. J. Frank, R. L. Mccreery, D. C. B. Redd, Anal. Chem., 67, No. 5, 777–783 (1995), doi: 10.1021/ac00101a001.

32. J. W. Chan, D. S. Taylor, T. Zwerding, S. M. Lane, K. Ihara, T. Huser, Biophys. J., 90, No. 2, 648–656 (2006), doi: 10.1529/biophysj.105.066761.

33. R. J. Lakshmi, V. B. Kartha, C. M. Krishna, J. G. R. Solomon, G. Ullas, P. U. Devi, Radiat. Res., 157, No. 2, 175–182 (2002), doi: 10.1667/0033-7587(2002)157[0175:trsfts]2.0.co;2.

34. G. J. Puppels, H. S. P. Garritsen, J. A. Kummer, J. Greve, Cytometry, 14, No. 3, 251–256 (1993), doi: 10.1002/cyto.990140303.

35. A. Mahadevan-Jansen, R. Richards-Kortum, Proc. 19th Annual Int. Conf. IEEE Eng. Med. and Biology Soc. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No. 97CH36136), 6, 2722–2728 (1997), doi: 10.1109/IEMBS.1997.756895.

36. N. Stone, C. Kendall, J. Smith, P. Crow, H. Barr, Faraday Disc., 126, 141–157 (2004), doi: 10.1039/B304992B.

37. N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, J. Raman Spectrosc., 33, No. 7, 564–573 (2002), doi: 10.1002/jrs.882.

38. L. Silveira Jr., S. Sathaiah, R. A. Zângaro, M. T. T. Pacheco, M. C. Chavantes, C. A. G. Pasqualucci, Lasers Surg. Med., 30, No. 4, 290–297 (2002), doi: 10.1002/lsm.10053.

39. R. K. Dukor, Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd. (2006), doi: 10.1002/0470027320.s8107.

40. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, C. M. Krishna, Biopolymers, 81, No. 3, 179–193 (2006), doi: 10.1002/bip.20398.

41. C. Guan, X. Luo, J. Lu, Z. Li, J. Optoelectron.•Laser, 30, No. 2, 221–226 (2019), doi: 10.16136/j.joel.2019.02.0209.

42. J. Yu, J. Meng, Y. Li, J. Ma, R. Zheng, Spectrosc. Spectr. Anal., 24, No. 8, 981–983 (2004), doi: 10.3321/j.issn:1000-0593.2004.08.024.

43. J. R. Aibani, J. Fluorescence, 24, 93–104 (2014), doi: 10.1007/s10895-013-1277-8.

44. V. Masilamani, K. Al-Zhrani, M. Al-Salhi, A. Al-Diab, M. Al-Ageily, J. Lumin., 109, No. 3-4, 143–154 (2004), doi: 10.1016/j.jlumin.2004.02.001.

45. S. Scheiner, T. Kar, J. Pattanayak, J. Am. Chem. Soc., 124, No. 44, 13257–13264 (2002), doi: 10.1021/ja027200q.

46. J. Joseph, E. D. Jemmis, J. Am. Chem. Soc., 129, No. 15, 4620–4632 (2007), doi: 10.1021/ja067545z.

47. V. Masilamani, M. S. AlSalhi, T. Vijmasi, K. Govindarajan, R. R. Rai, M. Atif, S. Prasad, A. Aldwayyan, J. Biomed. Opt., 17, No. 9, 098001 (2012), doi: 10.1117/1.JBO.17.9.098001.

48. A. C. Croce, G. Bottiroli, Eur. J. Histochem., 58, No. 4, 2461 (2014), doi: 10.4081/ejh.2014.2461.


Review

For citations:


Ou Q., Yang X., Yang W., Jiang L., Qian K., Shi Y., Liu G. Applying Serum Raman and Fluorescence Spectra to Liver Cancer Diagnosis. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):814.

Views: 107


ISSN 0514-7506 (Print)