Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

SYNTHESIS, VIBRATIONAL SPECTRA, AND DFT SIMULATIONS OF 3-BROMO-2-METHYL-5-(4-NITROPHENYL)THIOPHENE

Abstract

A new thiophene derivative, 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene (2), was synthesized through the Suzuki coupling reaction of 4-bromo-5-methylthiophen-2-ylboronic acid (1) and 4-iodonitrobenzene, and its structure was confirmed by nuclear magnetic resonance (NMR), low and high resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and X-ray investigations of the crystal structure. The FT-IR spectra (4000-400 cm-1), Raman spectra (4000-100 cm-1), and theoretical vibrational frequencies of this new substance were investigated. Its theoretically established geometric parameters and calculated vibrational frequencies are in good agreement with the reported experimental data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and other related parameters of the compound were calculated. The ionization potentials given by the B3LYP and HF (Hartree-Fock) methods for this new compound are -0.30456 and -0.30501 eV, respectively.

About the Authors

A. A. Balakit
College of Pharmacy, University of Babylon
Russian Federation


Y. . Sert
Bozok University; Sorgun Vocational School, Bozok University
Russian Federation


Ç. . Çırak
Erzincan University
Russian Federation


K. . Smith
School of Chemistry, Cardiff University
Russian Federation


B. M. Kariuki
School of Chemistry, Cardiff University
Russian Federation


G. A. El-Hiti
College of Applied Medical Sciences, King Saud University
Russian Federation


References

1. M. Irie, Chem. Rev., 100, 1685-1716(2000).

2. M. Balter, S. Li, J. R. Nilsson, J. Andreasson, U. Pischel, J. Am. Chem. Soc., 135, 10230-10233 (2013).

3. J.-C. Boyer, C-J. Carling, B. D. Gates, N. R. Branda, J. Am. Chem. Soc., 132, 15766-15772(2010).

4. T. C. Pijper, T. Kudernac, W. R. Browne, B. L. Feringa, J. Phys. Chem. C, 117, 17623-17632 (2013).

5. N. Soh, K. Yoshida, H. Nakajima, K. Nakano, T. Imato, T. Fukaminatob, M. Irie, M. Chem. Commun., 5206-5208 (2007). 834-11

6. Handbook of Organopalladium Chemistry for Organic Synthesis; Ed. E. Negishi, Wiley-Interscience, New York, Part III, 213 (2002).

7. J. J. Li, G. W. Gribble, Palladium in Heterocyclic Chemistry; Pergamon, Amsterdam (2000).

8. J. J. Dong, D. Roy, J. R. Roy, M. Ionita, H. Doucet, Synthesis, 3530-3546 (2011).

9. G. Vamvounis, D. Gendron, Tetrahedron Lett.,54, 3785-3787 (2013).

10. W. Renjie, P. Shouzhi, L. Gang, C. Bing, Tetrahedron, 69, 5537-5544 (2013).

11. K. A. Browne, D. D. Deheyn, G. A. El-Hiti, K. Smith, I. Weeks, J. Am. Chem. Soc., 133, 14637-14648 (2011).

12. K. Smith, G. A. El-Hiti, A. S. Hegazy, Chem. Commun., 46, 2790-2792 (2010).

13. K. Smith, G. A. El-Hiti, A. C. Hawes, Synthesis, 2047-2052(2003).

14. K. Smith, G. A. El-Hiti, G. Pritchard, A. Hamilton, A. J. Chem. Soc., Perkin Trans. I, 2299-2304 (1999).

15. Y. Sert, A. A. Balakit, N. Öztürk, F. Ucun, G. A. El-Hiti, Spectrochim. Acta A, 131, 502-511 (2014).

16. Y. Sert, F. Ucun, G. A. El-Hiti, K. Smith, A. S. Hegazy, J. Spectrosc., (2016) http://dx.doi.org/10.1155/2016/5396439.

17. G. M. Sheldrick, Acta Crystallogr., A64, 112-122 (2008).

18. A. Frish, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001).

19. D. C. Young, Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems (Electronics), John Wiley and Sons, New York (2001).

20. Gaussian 09, Revision A.1, Gaussian, Wallingford CT (2009).

21. M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).

22. M. H. Jamróz, Spectrochim. Acta A, 114, 220-230 (2013).

23. G. A. El-Hiti, K. Smith, A. A. Balakit, A. Masmali, B. M. Kariuki, Acta Crystallogr., E69, o1385 (2013).

24. A. Ünal, B. Eren, Spectrochim. Acta A, 114, 129-136 (2013).

25. M. Karabacak, S. Bilgili, T. Mavis, M. Eskici, A. Atac, Spectrochim. Acta A, 115, 709-718 (2013).

26. W. T. Harrison, C. S. C. Kumar, H. S. Yathirajan, B. V. Ashalatha, B. Narayana, Acta Crystallogr., E66, o2477 (2010).

27. X. Li, X. Jia, J. Li, Acta Crystallogr., E69, o848 (2013).

28. M. M. Bader, Acta Crystallogr., E65, o2119 (2009).

29. M. Akkurt, Ş. P. Yalçın, A. M. Asiri, O. Büyükgüngör, Acta Crystallogr., E64, o923(2008).

30. Z. H. Choban, M. Hanif, M. N. Tahir, Acta Crystallogr., E65, o117 (2009).

31. G. Varsayani, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1 and 2, Academic Kiado, Budapest (1973).

32. M. Jag, Organic Spectroscopy-Principles and Applications, 2nd ed., Narosa Publishing House, New Delhi (2001).

33. V. Balachandran, A. Janaki, A. Nataraj, Spectrochim. Acta A, 118, 321-330 (2014).

34. J. Svoboda, J. Sedlacek, J. Zednik, G. Dvorakova, O. Trhlikova, D. Redrova, H. Balcar, J. Vohlidal, J. Pol. Sci., 46, 2776-2787 (2008).

35. C. I. Sainz-Diaz, M. Francisco-Marquez, A. Vivier-Bunge, Theor. Chem. Acc., 125, 83-95 (2010).

36. T. D. Klots, R. D. Chirico, W. V. Steele, Spectrochim. Acta A, 5, 765-795 (1994).

37. M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil, E. Köse, Spectrochim. Acta A, 97, 556-567 (2012).

38. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).

39. N. B. Colthup, L. H. Daly, S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston (1990).

40. B. Smith, Infrared Spectral Interpretation, A systematic Approach, CRP Press, Washington, DC (1999).

41. A. Kumar, V. Deval, P. Tandom, A. Gupta, E. D. D'silva, Spectrochim. Acta A, 130, 41-53 (2014).

42. S. Periandy, S. Mohan, Proc. Natl. Acad. Sci. India, 68(A), III (1998).

43. V. R. Dani, Organic Spectroscopy, Tata-MacGraw Hill Publishing Company, New Delhi, p. 139 (1995).

44. E. Fereyduni, M. K. Rofouei, M. Kamae, S. Ramalingam, S. M. Sharifkhani, Spectrochim. Acta A, 90, 193-201 (2012).

45. H. Abdel-Shafy, H. Perlmutter, H. Kimmel, J. Mol. Struct., 42, 37-49 (1977).

46. V. K. Kumar, V. Balachandran, Spectrochim. Acta A, 61, 1811-1819 (2005).

47. A. Kovacs, G. Keresztury, V. Izvekov, Chem. Phys., 253, 193-204 (2000).

48. K. Sarojini, H. Krishnan, C. C. Kanakam, S. Muthu, Spectrochim. Acta A, 108, 159-170 (2013). 834-12

49. N. Sundaraganesan, S. Ilakiamani, H. Saleem, S. Mohan, Indian J. Pure Appl. Phys., 42, 585-590 (2004).

50. S. Ayyapan, N. Sundaraganesan, M. Kurt, T. R. Sertbakan, M. Ozduran, J. Raman Spectrosc., 41, 1379-1387 (2010).

51. K. Chaitanya, Spectrochim. Acta A, 86, 159-173 (2012).

52. E. Kavitha, N. Sundaraganesan, S. Sebastian, Indian J. Pure Appl. Phys., 48, 20-30 (2010).

53. A. Jayaprakash, V. Arjunan, S. Mohan, Spectrochim. Acta A, 81, 620-630 (2011).

54. S. Subashchandrabose, H. Saleem, Y. Erdogdu, G. Rajarajan, V. Thanikachalam, Spectrochim. Acta A, 82, 260-269 (2011).

55. T. Vijayakumar, I. Hubert Joe, C. P. R. Nair, V. S. Jayakumar, Chem. Phys., 343, 83-99 (2008).

56. M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta A, 89,137-148 (2012).


Review

For citations:


Balakit A.A., Sert Y., Çırak Ç., Smith K., Kariuki B.M., El-Hiti G.A. SYNTHESIS, VIBRATIONAL SPECTRA, AND DFT SIMULATIONS OF 3-BROMO-2-METHYL-5-(4-NITROPHENYL)THIOPHENE. Zhurnal Prikladnoii Spektroskopii. 2017;84(5):834(1)-834(12). (In Russ.)

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)