

Remote Recognition of Materials Using the Laser Photothermal Radiometry
Abstract
The issues related to the possibility of recognizing opaque materials of remote objects using the pulsed laser photothermal radiometry with long-term pulsed exposure are considered. Theoretical calculations of the range of recognition of materials with laser activation of their surface are given. The calculation results indicate a significant influence of thermal parameters on the recognition range. It has been experimentally shown that there is a decrease in the range by about an order of magnitude if the material of the search object has a large thermal inertia (metals), compared with a material with a small thermal inertia (polycarbonate, rubber), which provides a sufficient probability for their difference. At the same time, the condition of strong surface absorption must be fulfilled at the wavelength of the laser radiation. For synthetic polymer products, CO2 laser satisfies these considerations to the greatest extent. The influence of wind load on the temperature of the laser spot on the object is one of the key ones in the proposed method. The paper suggests a way to minimize this influence and even eliminate it almost completely. Issues related to the possibility of increasing the recognition range are discussed.
About the Authors
P. I. AbramovRussian Federation
Moscow
E. V. Kuznetsov
Russian Federation
Moscow
L. A. Skvortsov
Russian Federation
Moscow
M. I. Skvortsova
Russian Federation
Moscow
References
1. https://www.waste.ru/modules/section/item.php?itemid=260 (дата обращения 08.06.2021)
2. Г. В. Ильиных, В. Н. Коротаев, Н. Н. Слюсарь. Экология и промышленность России, № 7 (2012) 40-45
3. И. О. Кирильчук, В. В. Юшин, А. В. Иорданова. Способ оценки экологической опасности стихийных несанкционированных свалок, патент RU 2 731 662 C1 (2020)
4. Г. С. Мельников, В. М. Самков, Б. С. Товбин, О. А. Дерин. Опт. журн., 80, № 6 (2013) 36-42
5. https://www.theatlantic.com/science/archive/2016/07/how-lasers-can-help-clean-up-beach-trash/490952 (дата обращения 08.06.2021, 17:00)
6. Н. Р. Белашенков, А. В. Васильев, И. П. Гуров, А. И. Лопатин. Науч.-тех. вестн. информационных технологий, механики и оптики, 43 (2007) 289-292
7. О. Б. Анипко, И. Ю. Бирюков. Интегрированные технологии и энергосбережение, № 3 (2012) 48-54
8. Л. А. Скворцов. Основы фототермической радиометрии и лазерной термографии, Москва, Техносфера (2017)
9. X. Chen, N. Schmid. On the Limits of Target Recognition in the Presence of Atmospheric Effects. Lane Department of Computer Science and Electrical Engineering West Virginia University, Morgantown (2007)
10. Z. Xie, J. Dong. In: Multimedia Technology (ICMT), IEEE Int. Conf. (2011) 5630-5633
11. R. Raghatate, S. Rajurkar, M. Waghmare, P. Ambatkar. Int. J. Modern Eng. Res., 3, N 2 (2013) 2249-6645
12. H. Le, Y. Wang. Sensors, 10, N 1 (2010) 544-583
13. G. P. A. Malcolm, G. Maker, G. Robertson, M. Dunn, D. J. M. Stothard. In: Optics and Photonics for Counterterrorism and Crime Fighting V, Int. Soc. Optics and Photonics, 7486 (2009) 74860H
14. В. А. Ворона, В. А. Тихонов. Технические средства наблюдения в охране объектов, Москва, Гелиос АРВ (2005)
15. Ж. Госсорг. Инфракрасная термография, Москва, Мир (1988)
16. T. Loarer, J. Greffet, M. Huetz-Aubert. Appl. Opt., 29 (1990) 979-987
17. В. Н. Лопаткин, О. Е. Сидорюк, Л. А. Скворцов. Квант. электрон., 12 (1985) 339-346
18. P. I. Abramov, A. S. Budarin, E. V. Kuznetsov, L. A. Skvortsov. J. Appl. Spectr., 87 (2020) 579-600
19. http://www.firebid.umd.edu/material-database.php
Review
For citations:
Abramov P.I., Kuznetsov E.V., Skvortsov L.A., Skvortsova M.I. Remote Recognition of Materials Using the Laser Photothermal Radiometry. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):134-140. (In Russ.)