Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Dependence of 400 MHz NMR Peak Line Widths of Crude Oil on Well Characteristics

Abstract

Today, magnetic field inhomogeneity in high-field NMR machines is minimized by proper shimming of the machine and extensive dilution of the sample with deuteron solvents. Hence, the line width (LW) measurements of the NMR peaks are reliable for NMR studies. This study is aimed at examining the relationship between the crude oil properties and the LW values of the CH2 and CH3 peaks and the relationship between the LW of water in crude oil and the percentage of water. A set of 22 mixtures was prepared by adding 0.02 mL of each crude oil to each 0.98 mL of CDCl3. A suitable NMR spectrum, including the water peaks of the mixtures, was obtained with a spectrometer operating at 400 MHz. Paraffinic CH2 and CH3 peak LWs vary from well to well. Paraffinic CH3 LW decreases nearly linearly with American Petroleum Institute gravity. In addition, the LW of the water peak at 4.75 ppm is strongly related to the percentage of water in crude oil. The mixtures used in this study provide the appropriate NMR peaks for CH2, CH3, and water in crude oil. NMR peaks of water in crude oil were displayed for the first time in the high field. Some of the previous results obtained in the low-NMR field were found. Therefore, this study suggests an additional approach for high-field NMR studies in petroleum chemistry.

About the Authors

D. Kal
Batman University, Graduate School of Natural and Applied Sciences
Russian Federation

Batman



M. Sunkur
Batman University
Russian Federation

Faculty of Art and Sciences, Department of Chemistry,

Batman



M.Z. Köylü
Dicle University
Russian Federation

Faculty of Sciences, Department of Physics,

Diyarbakir



A. Yilmaz
Batman University
Russian Federation

Faculty of Art and Sciences, Department of Chemistry,

Batman



References

1. I. Rakhmatullin, S. Efimov, B. Ya. Margilus, K. Vladimir, J. Pet. Sci. Eng., 156 (2017), doi: 10.1016/j.petrol.2017.04.041 (2017).

2. İ. Arsel, D. Kal, A. Yılmaz, J. Eng. Technol. Appl. Sci., 6, No. 2, 69–78 (2021).

3. I. Rakhmatullin, I. S. Efimov, M. Varfolomeev, V. Klochkov, IOP Conf. Ser.: Earth Environ. Sci., 155, 012014 (2018).

4. S. Mondal, R. A. Kumar, J. Anal. Sci. Technol., 6, 24–34 (2015).

5. John Edwards, In: Spectroscopic Analysis of Petroleum Products and Lubricants, Ed. Kishore Nadkarni, ASTM International – Institute of Physics (2010).

6. L. M. Duarte, P. R. Filgueiras, S. R. C. Silva, J. C. M. Dias, L. M. S. L. Oliveira, E. V. R. Castro, de M. A. L. Oliveira, Fuel, 181, No. 1, 660–669 (2016).

7. N. A. Portela, E. C. S. Oliveira, A. C. Neto, R. R. T. Rodrigues, S. R. C. Silva, E. V. R. Castro, P. R. Filgueiras, Fuel, 166, 12–18 (2016).

8. G. Mladenov, V. S. Dimitrov, Mag. Res. Chem., 39, 672–680 (2001).

9. K. Chen, N. Tjandra, J. Mag. Res., 197, No. 1, 71–76 (2009).

10. M. J. Wilhelm, H. H. Ong, F. W. Wehrli, Proc. 20th Annual Meeting of ISMRM, Melbourne, Victoria, Australia, 2394 (2012).

11. U. N. Yilmaz, B. D. Yilmaz, M. Z. Köylü, J. Appl. Spectrosc., 89, No. 6, 60–65 (2022).

12. A. Yilmaz, B. Zengin, J. Appl. Spectrosc., 80, No. 3, 335–340 (2013).

13. A. Yilmaz, B. Zengin, F. S. Ulak, J. Appl. Spectrosc., 81, No. 3, 365–370 (2014).

14. G. A. La Torraca, K. J. Dunn, P. R. Webber, R. M. Carlson, Mag. Res. Imaging, 16, No. 5, 659–662 (1998).

15. C. P. Aichele, M. Flaum, T. Jiang, G. J. Hirasaki, W. G. Chapman, J. Colloid. Interface Sci., 315, No. 2, 607–619 (2007).

16. A. Majid, M. Saidian, M. Prasad, C. A. Koh, Can. J. Chem., 93, No. 9, 1007–1013 (2015).

17. H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 62, No. 21, 7512–7515 (1997).

18. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, et al., Organometallics, 29, No. 9, 2176–2179 (2010).

19. M. Abouelresh, J. Pet. Sci. Eng., 149, 75–87 (2017).

20. A. C. Reynolds, In: Inverse Theory for Petroleum Reservoir Characterization and History Matching, Eds. S. Oliver, A. C. Reynolds, N. Liu, Cambridge University Press, Cambridge, 978-0-521-88151-7 (2008).

21. A. Carrington, A. D. McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics, Harper and Row, London (1967).

22. J. Mitchell, T. C. Chandrasekera, L. F. Gladden, J. Chem. Phys., 132, 244705 (2010).

23. M. D. Abdulkadhim, IOP Conf. Ser.: Mater. Sci. Eng., 579, 012034 (2019), doi: 10.1088/1757-899X/579/1/012034.

24. C. T. P. Chang, J. Qiao, A. Watson, S. Chen, J. Mag. Res., 126, 213–220 (1997).

25. M. Fluery, F. Deflandre, S. Godefroy, Comptes Rendus de l'Académiedes Sciences. Series IIC. Chemistry, 4, 869–872 (2001), doi.org/10.1016/S1387-1609(01)01343-3.

26. J. P. Korb, B. Nicot, A. Louis-Joseph, S. Bubici, G. Ferrante, J. Phys. Chem. C, 118, No. 40, 23212–23218 (2014).

27. A. Muhammad, R. B. de Vasconcellos Azeredo, Fuel, 130, 126–134 (2014).

28. B. Esteban, J. R. Riba, G. Baquero, A. Rius, R. Puig, Biomass. Bioenerg., 42, 164–171 (2012).

29. J. Bryan, A. Kantzas, C. Bellehumeur, SCA, 39 (2002).

30. J. P. Korb, N. Vorapalawut, B. Nicot, R. G. Bryant, J. Phys. Chem., 119, 24439–24446 (2015), doi: 10.1006/jmra.1996.0218.

31. T. R. Bryar, C. J. Daughney, R. J. Knight, J. Mag. Res., 142, No. 1, 74–85 (2000).

32. B. Zengin, M. Z. Köylü, S. Korunur, A. Yılmaz, Chin. J. Phys., 51, No. 4, 692–699 (2013).

33. U. N. Yilmaz, B. D. Yilmaz, J. Appl. Spectrosc., 87, No. 5, 946–950 (2020).

34. U. N. Yılmaz, B. D. Yılmaz, M. Z. Köylü, J. Appl. Spectrosc., 89, No. 6, 845–851 (2022).


Review

For citations:


Kal D., Sunkur M., Köylü M., Yilmaz A. Dependence of 400 MHz NMR Peak Line Widths of Crude Oil on Well Characteristics. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):161.

Views: 104


ISSN 0514-7506 (Print)