Diode Laser Frequency Stabilities Obtained by Frequency and Zeeman Modulation Methods
Abstract
The extended cavity diode lasers were stabilized using the first and third derivatives obtained by the frequency modulation method from the hyperfine resonances of the 87Rb D2 transition line. The frequency stability values were measured as 3.1´10–12, 5.6´10–13, and 1.9´10–12 for integration times of 1, 102, and 104 s, respectively, using the first derivatives of F=1→F¢=1 and F=1→F¢=2 resonances. By use of the third derivatives of F=2→F¢=1,3 and F=2→F¢=2,3 cross-over resonances, 4.0´10–12 − 1 s, 5.7´10–13 − 102 s, 9.3´10–13 − 104 s frequency stability values were obtained. These values compared with the results of the previous study obtained by the Zeeman modulation method.
References
1. T. J. Quinn, Metrologia, 40, 103 (2003), https://doi.org/10.1088/0026-1394/40/2/316.
2. J. Vanier, Appl. Phys. B, 81 (2005), https://doi.org/10.1007/s00340-005-1905-3.
3. S. Micalizio, F. Levi, C. E. Calosso, M. Gozzelino, A. Godone, GPS Solutions, 25, 94 (2021), https://doi.org/10.1007/s10291-021-01136-9.
4. Y. Ovchinnikov, M. Giuseppe, Metrologia, 48, 87 (2011), https://doi.org/10.1088/0026-1394/48/3/003.
5. J. Kitching, Appl. Phys. Rev., 5, 031302 (2018), https://doi.org/10.1063/1.5026238.
6. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, M. A. Krainak, Appl. Opt., 50 (2011), https://doi.org/10.1364/AO.50.001047.
7. V. Shukla, S. K. Nath, V. Naik, A. Chakrabarti, A. Ray, J. Modern Opt., 68, No. 6 (2021), https://doi.org/10.1080/09500340.2021.1894361.
8. C. Cherfan, I. Manai, S. Zemmouri, J. C. Garreau, J. F. Clément, P. Szriftgiser, R. Chicireanu, Opt. Express, 28, No. 1 (2020), https://doi.org/10.1364/OE.28.000494.
9. R. Hamid, E. Sahin, C. Erdogan, G. Kramer, B. Lipphardt, D. A. Tyurikov, Compar. Laser Phys., 14, 7 (2004).
10. G. P. Barwood, P. Gill, Laser Stabilization for Precision Measurements, Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology, and Communication, 4, CRC Press, Boca Rotan (2021).
11. E. Şahin, Appl. Phys. B, 127, 148 (2021), https://doi.org/10.1007/s00340-021-07697-4.
12. H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, N. Oura, Jpn J. Appl. Phys., 21, L561 (1982), https://doi.org/10.1143/JJAP.21.L561.
13. A. Hemmerich, D. H. McIntyre, D. Schropp, D. Meschede, T. W. Hänsch, Opt. Commun., 75, No. 2 (1990), https://doi.org/10.1016/0030-4018(90)90239-P.
14. G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B, 53 (1991), https://doi.org/10.1007/BF00330229.
15. J. Ye, S. Swartz, P. Jungner, J. L. Hall, Opt. Lett., 21 (1996), https://doi.org/10.1364/OL.21.001280.
16. V. Singh, V. B. Tiwari, S. Mishra, JOSA B, 38 (2021), https://doi.org/10.1364/JOSAB.411159.
17. G. Yang, X. Geng, Q. Yu, S. Liang, Y. Zhu, G. Huang, G. Li, JOSA B, 37 (2020), https://doi.org/10.1364/JOSAB.380337.
18. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, C. S. Adams, Appl. Phys. Lett., 94, 071107 (2009), https://doi.org/10.1063/1.3086305.
19. M. Zhao, X. Jiang, R. Fang, Y. Qiu, Z. Ma, C. Han, B. L. Lu, C. Lee, Appl. Opt., 60 (2021), https://doi.org/10.1364/AO.425694.
20. A. Gusching, M. Petersen, N. Passilly, D. Brazhnikov, M. Abdel Hafiz, R. Boudot, J. Opt. Soc. Am. B, 38 (2021), https://doi.org/10.1364/JOSAB.438111.
21. W. Liang, V. Ilchenko, D. Eliyahu, E. Dale, A. Savchenkov, D. Seidel, A. Matsko, L. Maleki, Appl. Opt., 54, No. 11 (2015), https://doi.org/10.1364/AO.54.003353.
22. C. Affolderbach, G. Mileti, Opt. and Lasers Eng., 43 (2005), https://doi.org/10.1016/j.optlaseng.2004.02.009.
23. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B, 32 (1983), https://doi.org/10.1007/BF00688820.
24. U. Tanaka, T. Yabuzaki, Jpn J. Appl. Phys., 33 (1994), https://doi.org/10.1143/JJAP.33.1614.
25. W. Demtröder, Laser Spectroscopy Basic Concepts and Instrumentation, Springer-Verlag Berlin Heidelberg, New York (1996).
26. M. Himsworth, T. Freegarde, Phys. Rev. A, 81, 023423 (2010), https://doi.org/10.1103/PhysRevA.81.023423.
27. Recommended Values of Standard Frequencies for Applications Including the Practical Realization of the Meter and Secondary Representations of the Definition of the Second, https://www.bipm.org/documents/20126/41590994/87Rb_780nm_2015.pdf/83949ec4-c81c-7b8c-98f1-e4d191987e71 (accessed 10 January 2023).
28. https://steck.us/alkalidata/rubidium87numbers.1.6.pdf. (accessed 25 January 2023).
29. A. M. Akulshin, V. A. Sautenkov, V. L. Velichansky, S. A. Zibrov, M. V. Zverkov, Opt. Commun., 77, No. 4 (1990), https://doi.org/10.1016/0030-4018(90)90094-A.
30. E. Şahin, Eur. Phys. J., 76, 119 (2022), https://doi.org/10.1140/epjd/s10053-022-00444-0.
31. http://www.stable32.com/.
32. D. W. Allan, Gyroscopy Navig., 7 (2016), https://doi.org/10.1134/S2075108716010028.
33. S. Nakayama, Jpn J. Appl. Phys., 24, 1R (1985), https://doi.org/10.1143/JJAP.24.1.
Review
For citations:
Şahin E. Diode Laser Frequency Stabilities Obtained by Frequency and Zeeman Modulation Methods. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):162.