Influence of Frequency Chirp and Axial Magnetic Field on Electron Acceleration by Employing cos2 Laser Pulse Envelope in Vacuum
Abstract
Employment of an external magnetic field on a frequency-chirped cos2 laser pulse envelope for effective electron acceleration is studied. After the electron interacts with the laser pulse, the frequency chirp influences the electron dynamics, betatron resonance, and energy gain of the electron, ensuring effective acceleration of the electron with significant energy gain in the order of GeV. If a suitable external magnetic field is applied, an electron can gain energy and retain the same energy significantly. In this research, we employed the cos2 laser pulse envelope to examine the impact of the laser pulse envelope on the investigation of electron acceleration in a vacuum. The front of the tested envelopes had received an axial injection of electrons. In all calculations, it is assumed that the front end of each pulse met the electron at time t = 0 at the position of origin. The relativistic Newton–Lorentz equations of electron motion in the field of the laser pulse have been solved analytically and numerically.
About the Authors
A.K. PramanikIndia
Department of Physics,
Phagwara
J. Rajput
Japan
References
1. P. Sprangle, G. Joyce, E. Esarey, A. Ting, AIP Conf. Proc., 175, 231–239 (1988).
2. C. Joshi, T. Katsouleas, Phys. Today, 56, 47–53 (2003).
3. Y. I. Salamin, Phys. Lett. A, 3, 4950–4953 (2010).
4. L. J. Wong, K. H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. S. Kartner, I. Kaminer, Sci. Rep., 7, 1159–1167 (2017).
5. D. K. Kuri, Phys. Plasmas, 27, 3102–3107 (2020).
6. F. Jokar, E. Eslami, Optik, 123, 1947–1951 (2012).
7. A. K. Pramanik, H. S. Ghotra, N. Kant, J. Rajput, IOP Conf. Proc. RAFAS, 2267, 012013–012018 (2021).
8. T. Tajima, J. Dawson, Phys. Rev., 43, 267–270 (1979).
9. L. Cichitelli, H. Hora, R. Postle, Phys. Rev. A, 41, 3727–3732 (1990).
10. J. X. Wang, Y. K. Ho, Q. Kong, L. J. Zhu, L. Feng, S. Scheid, H. Hora, Phys. Rev. E, 58, 6575–6577 (1998).
11. H. Hora, M. Hoelss, W. Scheid, J. W. Wang, Y. K. Ho, F. Osman, R. Castillo, Laser Part, Beams, 18, 135–144 (1999).
12. J. J. Xu, Y. K. Ho, Q. Kong, Z. Chen, P. X. Wang, W. Wang, W. Lin, J. Appl. Phys., 98, 6105–6108 (2005).
13. B. Rau, T. Tajima, H. Hojo, Phys. Rev. Lett., 78, 3310–3313 (1997).
14. G. Malka, E. Lefebvre, J. L. Miquel, Phys. Rev. Lett., 78, 3314–3317 (1997).
15. J. Faure, J. R. Marques, V. Malka, F. Amiranoff, Z. Najmudin, B. Walton, J. P. Roussean, S. Rance, A. Solodov, P. Mora, Phys. Rev. E, 63, 5401–5404 (2001).
16. W. P. Leemans, P. Catravas, E. Esarey, C. G. R. Geddes, C. Toth, R. Trines, C. B. Schroeder, A. B. Shadwick, V. J. Tilborg, J. Faure, Phys. Rev. Lett., 89, 4802–4805 (2002).
17. H. Hora, Nature, London, 333, 337–338 (1988).
18. F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. R. Marques, G. Matthieussent, P. Mine, A. Modena, P. Mora, J. Morillo, Z. Najmudin, Phys. Rev. Lett., 81, 995–998 (1995).
19. J. Singh, J. Rajput, H. S. Ghotra, N. Kant, Comm. Theor. Phys., 73, 5502–5506 (2021).
20. H. S. Ghotra, D. Jaroszynski, B. Ersfeld, N. S. Saini, S. Yoffe, N. Kant, Laser Part. Beams, 36, 154–161 (2018).
21. A. K. Pramanik, H. S. Ghotra, N. Kant, J. Rajput, Laser Phys. Lett., 19, 075301 (2022).
22. P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, A. M. Sessler, Appl. Phys. Lett., 78, 2253–2265 (2001).
23. R. B. Palmer, Front. Particle Beams, 296, 607–635 (1988).
24. K. P. Singh, Appl. Phys. Lett., 87, 4102–4105 (2005).
25. D. Strickland, G. Mourou, Opt. Commun., 56, 219–221 (1985).
26. H. S. Ghotra, N. Kant, Laser Phys. Lett., 13, 5402–5408 (2016).
27. Y. I. Salamin, N. M. Jisrawi, J. Phys. B: At. Mol. Opt. Phys. 47, 5601–5605 (2014).
28. H. S. Ghotra, N. Kant, Opt. Rev., 22, 539–543 (2015).
29. J. Rajput, N. Kant, A. Singh, AIP Conf. Proc., 1860, 5–12 (2017).
30. N. Kant, J. Rajput, A. Singh, Eur. Phys. J. D, 74, 142–150 (2020).
31. D. N. Gupta, N. Kant, K. P. Singh, Laser Phys., 29, 5301–5305 (2019).
32. V. Marceau, A. April, M. Piché, Opt. Lett., 37, 2442–2444 (2012).
33. F. Sohbatzadeh, H. Aku, J. Plasma Phys., 77, 3950–3961 (2011).
34. Y. I. Salamin, Phys. Lett. A, 376, 2442–2445 (2012).
35. N. M. Jisrawi, B. J. Galow, Y. I. Salamin, Laser and Particle Beams, 32, 671–680 (2014).
Review
For citations:
Pramanik A., Rajput J. Influence of Frequency Chirp and Axial Magnetic Field on Electron Acceleration by Employing cos2 Laser Pulse Envelope in Vacuum. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):165.