Spectrophotometric Method for Determination of Cu(II) Using a New Schiff Base Ligand
Abstract
The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the effect of the addition sequence, the effect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coefficient (r) equal 0.9986, coefficient of determination (r2) equal to 0.9973, and percentage capital R-squared explained variation as a percentage/total variation (R2%) equal to 99.73. The method has been successfully applied for the estimation of Cu(II) ions without the influence of other interfering ions, and it can be applied to estimate Cu(II) in any sample.
About the Authors
E.N. MezaalIraq
Department of Chemistry, College of Education for Pure Sciences Ibn-Al-Haitham,
Baghdad
K.A. Sadiq
Iraq
Department of Chemistry, College of Education for Pure Sciences Ibn-Al-Haitham,
Baghdad
R.M. Rumez
Iraq
Department of Chemistry, College of Education for Pure Sciences Ibn-Al-Haitham,
Baghdad
References
1. N. M. Elham, A. S. Kawther, N. Z. Asmaa, M. R. Rasmia, J. Pure Appl. Sci., 30, No. 1, 96–106 (2017), doi: 10.1109/5.771073.
2. Q. Xingpu, Q. Jianzhong, Ch. Tong, L. Daoli, Ch. Bin, J. Electrochem. Sci., 12, 5511–5520 (2017), doi: 10.20964/2017.06.49.
3. I. Ivanova, B. Atanasova, A. Kostadinova, Y. Bocheva, K. Tzatchev, Acta Med. Bulgarica, 43, No. 2, 21–31 (2016), doi: 10.1515/amb-2016-0013.
4. G. Stela, T. Petar, B. Artem, J. Chem. Tech. Metall., 56, No. 5, 999–1007(2021).
5. H. Jeanne, H. J. Freeland-Graves, S. Namrata, J. L. Jane, J. Trace Elements Medicine and Biology, 31, 135–141 (2015), doi: 10.1016/j.jtemb.2014.04.006.
6. S. Rosanna, J. Trace Elements Medicine and Biology, 26, 93–96 (2012), doi: 10.1016/j.jtemb.2012.04.012.
7. S. Rosanna, S. Mariacristina, P. Renato, Neurobiology Aging, 35, No. 2, S40–S50 (2014), doi: 10.1016/j.neurobiolaging.2014.02.031.
8. D. L. De Romańa, M. Olivares, R. Uauy, M. Araya, J. Trace Elements Medicine and Biology, 25, No. 1, 3–13 (2011), doi: 10.1016/j.jtemb.2010.11.004.
9. P. Peep, Fed. Eur. Biochem. Soc. Lett., 587, No. 13, 1902–1910 (2013), doi: 10.1016/j.febslet.2013.05.019.
10. F. Haber, J. Weiss, Proc. R. Soc. Lond. A, 147, 332–351 (1934), doi:10.1098/rspa.1934.0221.
11. S. G. Ehab, A. A. Tamer, A.-E. Amr, G. M. Gehad, H. A. El-Bary, Int. J. Electrochem. Sci., 15, 11904–11919 (2020), doi: 10.20964/2020.12.21.
12. M. E. Khaled, H. Qamar, A. Khawla, Progress Chem. Biochem. Res., 5, No. 3, 229–238 (2022), doi: 10.22034/pcbr.2022.338475.1222.
13. A. Daniel, N. R. Desam, N. M. Kebede, Spectrophotometric Determination of Cu (II) in Soil and Vegetable Samples Collected from Abraha Atsbeha, Tigray, Springer Plus, 5 (1169), 1–8 (2016), doi: 10.1186/s40064-016-2848-3.
14. T. Le Ngoc, T. Le Van, X. Ch. Nguyen, Rasayan J. Chem., 11, No. 2, 850–856 (2018), doi: 10.31788/RJC.2018.1122088.
15. T. Andriy, T. Oleksandr, R. Petro, Chem. Chem. Technol., 10, No. 1, 19–25 (2016), doi: 10.23939/chcht10.01.019.
16. S. A. Salman, M. A. Hamed, Appl. Sci., 10, No. 11, 1–17 (2020), doi: 10.3390/app10113895.
17. R. G. Sreenivasula, R. P. Raveendra, Int. Lett. Chem., Phys., Astronomy, 51, 105–114 (2015), doi: 10.18052/www.scipress.com/ILCPA.51.105.
18. Z. Sh. Oxana, P. Igor, Ecolog. Processes, 4, No. 16, 1–5 (2015), doi: 10.1186/s13717-015-0042-0.
19. H. A. Mustafa, F. H. Alaa, System. Rev. Pharm., 11, No. 10, 171–181 (2020), doi: 10.31838/srp.2020.10.29.
20. R. Esraa, A. A. Muneer, H. K. Salih, Indonesian J. Chem., 20, No. 5, 1080–1091 (2020), doi: 10.22146/ijc.47894.
21. J. C. Souza, A. T. Toci, M. A. Beluomini, S. P. Eiras, Revista Virtual de Química, 8, No. 3, 687–701 (2016), doi: 10.5935/1984-6835.20160052.
22. A. D. Saadiyah, R. B. Sana, Asian J. Chem., 26, No. 16, 5305–5310 (2014), doi: 10.14233/ajchem.2014.17754.
23. O. Sama, D. Serkan, A. Müberra, J. Taibah University Science, 12, No. 6, 820–825 (2018), doi: 10.1080/16583655.2018.1521710.
24. M. A. Dhiea, A. A. Muneer, IOP Conference Series: Materials Science and Engineering, 928, 1–8 (2020), doi: 10.1088/1757-899X/928/5/052013.
25. O. Ankur, N. Bhojak, K. Shelly, J. Swati, Int. J. Food Fermentation Technol., 8, No. 1, 99–103 (2018), doi: 10.30954/2277-9396.01.2018.13.
26. Z. Z. Ali, M. M. Abel, T. H. Afet, A. K. Kerim, O. I. Kamala, C. G. Yavar, Open Acc. J. Sci., 1, No. 4, 97–102 (2017), doi: 10.15406/oajs.2017.01.00019.
27. K. Tiina, Z. Anna, S. Julia, F. Merlin, P. Thomas, T. Vello, P. Peep, Sci. Rep., 10, No. 1, 1–11 (2020), doi: 10.1038/s41598-020-62560-4.
28. G. C. E. Emine, K. Adnan, Turkish J. Chem., 42, No. 2, 257–263 (2018), doi: 10.3906/kim-1703-83.
29. B. M. Sarhan, R. M. Rumez, H. A. Hassan, Ibn Al Haitham, J. Pure Appl. Sci., 26, No. 2, 178–187 (2013), doi:10.1109/5.771073.
30. N. A. Ahmed, M. A. Fahad, L. Aroua, A. Sadeq, Y. A. Mohammad, O. M. Samir, A. M. Jazem, E. I. E. Serag, A. Abrar, Arabian J. Chem., 13, No. 10, 7378–7389 (2020), doi: 10.1016/j.arabjc.2020.08.014.
31. A. E. Fathy, A. S. Tarek, M. E. Mohamed, N. A. Ahmed, Appl. Organometall. Chem., 32, No. 4, e4215 (2018), doi: 10.1002/aoc.4215.
32. A. Mohammad, I. A. Saud, T. Agata, K. Rafal, S. Faiyaz, M. S. Saied, A. Mahboob, R. K. Mohammed, M. W. Saikh, J. Mol. Structure, 1201, 1–8 (2020), doi: 10.1016/j.molstruc.2019.127177.
33. A. E. Fathy, M. E. Mohamed, N. A. Ahmed, M. A. Adel, Appl. Organometall. Chem., 34, No. 11, 1–11 (2020), doi:10.1002/aoc.5898.
34. R. S. Bhaskar, C. A. Ladole, N. G. Salunkhe, M. Barabde, A. S. Aswar, Arabian J. Chem., 13, No. 8, 6559–6567 (2020), doi: 10.1016/j.arabjc.2020.06.012.
35. K. Buldurun, N. Turan, E. Bursal, A. Mantarcı, F. Turkan, P. Taslimi, I. Gulcin, Res. Chem. Intermed., 46, No. 1, 283–297 (2020), doi:10.1007/s11164-019-03949-3.
36. N. M. Simon, R. S. Nicole, W. N. Lydia, A. O. Ruth, O. W. Shem, M. Mervin, A. L. Roger, O. O. Martin, Am. Chem. Soc. Omega, 5, No. 25, 14942–14954 (2020), doi: 10.1021/acsomega.0c00360.
37. K. Hassan, M. Masoumeh, S. Amir, B. Mehdi, S. Elham, K. Roya, H. M. Seyed, Chem. Data Coll., 26, 100354 (2020), doi: 10.1016/j.cdc.2020.100354.
38. A. B. Mohamed, B. E. Samy, M. A. Ahmed, A. N. Nabel, M. Tahany, J. Mol. Liquids, 316, 113862 (2020), doi: 10.1016/j.molliq.2020.113862.
39. S. Tahereh, K. Alireza, S. Esmail, J. Jan, Inorg. Chim. Acta, 506, No. 1, 119537 (2020), doi: 10.1016/j.ica.2020.119537.
40. Aleksandra Bocian, Maciej Skrodzki, Maciej Kubicki, Adam Gorczyński, Piotr Pawluć, Violetta Patroniak, Appl. Catal. A General, 602, No. 5, 117665 (2020), doi: 10.1016/j.apcata.2020.117665.
41. O. Z. B. Rafi, Y. K. Muhammad, B. M. Rasool, J. Chem. Tech. Biotech., 95, No. 6, 1694–1704 (2020), doi: 10.1002/jctb.6362.
42. M. Y. Suhair, B. Q. Bushra, O. A. Naeemah, Egyptian J. Chem., 64, No. 2, 673–691 (2021), doi: 10.21608/EJCHEM.2019.13907.1861.
43. B. Könül, D. Serkan, A. Müberra, J. Taibah University Sci., 11, 808–814 (2017), doi: 10.1016/j.jtusci.2017.02.001.
44. F. Vladislav, T. Stefan, V. Alexandru, B. Laura, Bull. Institutului Politehnic Din Iasi, 62, No. 66, 9–20 (2016).
Review
For citations:
Mezaal E., Sadiq K., Rumez R. Spectrophotometric Method for Determination of Cu(II) Using a New Schiff Base Ligand. Zhurnal Prikladnoii Spektroskopii. 2024;91(1):170.